You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run suno-ai/bark using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"suno-ai/bark:b76242b40d67c76ab6742e987628a2a9ac019e11d56ab96c4e91ce03b79b2787",
{
input: {
prompt: "Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe.",
text_temp: 0.7,
output_full: false,
waveform_temp: 0.7,
history_prompt: "announcer"
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run suno-ai/bark using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"suno-ai/bark:b76242b40d67c76ab6742e987628a2a9ac019e11d56ab96c4e91ce03b79b2787",
input={
"prompt": "Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe.",
"text_temp": 0.7,
"output_full": False,
"waveform_temp": 0.7,
"history_prompt": "announcer"
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run suno-ai/bark using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "b76242b40d67c76ab6742e987628a2a9ac019e11d56ab96c4e91ce03b79b2787",
"input": {
"prompt": "Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe.",
"text_temp": 0.7,
"output_full": false,
"waveform_temp": 0.7,
"history_prompt": "announcer"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/suno-ai/bark@sha256:b76242b40d67c76ab6742e987628a2a9ac019e11d56ab96c4e91ce03b79b2787 \
-i 'prompt="Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."' \
-i 'text_temp=0.7' \
-i 'output_full=false' \
-i 'waveform_temp=0.7' \
-i 'history_prompt="announcer"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/suno-ai/bark@sha256:b76242b40d67c76ab6742e987628a2a9ac019e11d56ab96c4e91ce03b79b2787
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "prompt": "Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe.", "text_temp": 0.7, "output_full": false, "waveform_temp": 0.7, "history_prompt": "announcer" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.070. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{
"completed_at": "2023-04-25T22:18:59.625638Z",
"created_at": "2023-04-25T22:11:26.774980Z",
"data_removed": false,
"error": null,
"id": "ngk3yp5omvdsvkcdoljxs2m4ra",
"input": {
"prompt": "Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."
},
"logs": "0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:27, 3.65it/s]\n 3%|▎ | 3/100 [00:00<00:13, 7.12it/s]\n 5%|▌ | 5/100 [00:00<00:10, 8.90it/s]\n 7%|▋ | 7/100 [00:00<00:09, 9.98it/s]\n 9%|▉ | 9/100 [00:00<00:08, 10.54it/s]\n 11%|█ | 11/100 [00:01<00:08, 11.09it/s]\n 13%|█▎ | 13/100 [00:01<00:07, 11.16it/s]\n 15%|█▌ | 15/100 [00:01<00:07, 11.32it/s]\n 17%|█▋ | 17/100 [00:01<00:07, 11.66it/s]\n 19%|█▉ | 19/100 [00:01<00:06, 11.69it/s]\n 21%|██ | 21/100 [00:01<00:06, 12.05it/s]\n 23%|██▎ | 23/100 [00:02<00:06, 12.17it/s]\n 25%|██▌ | 25/100 [00:02<00:06, 11.89it/s]\n 27%|██▋ | 27/100 [00:02<00:06, 11.64it/s]\n 29%|██▉ | 29/100 [00:02<00:06, 11.51it/s]\n 31%|███ | 31/100 [00:02<00:05, 11.61it/s]\n 33%|███▎ | 33/100 [00:02<00:05, 11.88it/s]\n 35%|███▌ | 35/100 [00:03<00:05, 11.82it/s]\n 37%|███▋ | 37/100 [00:03<00:05, 11.75it/s]\n 39%|███▉ | 39/100 [00:03<00:05, 11.63it/s]\n 41%|████ | 41/100 [00:03<00:05, 11.64it/s]\n 43%|████▎ | 43/100 [00:03<00:04, 11.79it/s]\n 45%|████▌ | 45/100 [00:04<00:04, 11.94it/s]\n 47%|████▋ | 47/100 [00:04<00:04, 11.83it/s]\n 49%|████▉ | 49/100 [00:04<00:04, 11.89it/s]\n 51%|█████ | 51/100 [00:04<00:04, 11.70it/s]\n 53%|█████▎ | 53/100 [00:04<00:04, 11.56it/s]\n 55%|█████▌ | 55/100 [00:04<00:03, 11.64it/s]\n 57%|█████▋ | 57/100 [00:05<00:03, 11.63it/s]\n 59%|█████▉ | 59/100 [00:05<00:03, 11.38it/s]\n 61%|██████ | 61/100 [00:05<00:03, 11.38it/s]\n 63%|██████▎ | 63/100 [00:05<00:03, 11.07it/s]\n 65%|██████▌ | 65/100 [00:05<00:03, 11.19it/s]\n 67%|██████▋ | 67/100 [00:05<00:02, 11.28it/s]\n 69%|██████▉ | 69/100 [00:06<00:02, 11.08it/s]\n 71%|███████ | 71/100 [00:06<00:02, 11.11it/s]\n 73%|███████▎ | 73/100 [00:06<00:02, 10.91it/s]\n 75%|███████▌ | 75/100 [00:06<00:02, 10.78it/s]\n 77%|███████▋ | 77/100 [00:06<00:02, 10.83it/s]\n 79%|███████▉ | 79/100 [00:07<00:01, 10.86it/s]\n 81%|████████ | 81/100 [00:07<00:01, 10.64it/s]\n 83%|████████▎ | 83/100 [00:07<00:01, 10.67it/s]\n 85%|████████▌ | 85/100 [00:07<00:01, 10.57it/s]\n 87%|████████▋ | 87/100 [00:07<00:01, 10.34it/s]\n 89%|████████▉ | 89/100 [00:08<00:01, 10.39it/s]\n 91%|█████████ | 91/100 [00:08<00:00, 10.10it/s]\n 93%|█████████▎| 93/100 [00:08<00:00, 10.06it/s]\n100%|██████████| 100/100 [00:08<00:00, 20.32it/s]\n100%|██████████| 100/100 [00:08<00:00, 11.69it/s]\n 0%| | 0/36 [00:00<?, ?it/s]\n 3%|▎ | 1/36 [00:00<00:23, 1.48it/s]\n 6%|▌ | 2/36 [00:01<00:22, 1.48it/s]\n 8%|▊ | 3/36 [00:02<00:22, 1.45it/s]\n 11%|█ | 4/36 [00:02<00:22, 1.43it/s]\n 14%|█▍ | 5/36 [00:03<00:21, 1.41it/s]\n 17%|█▋ | 6/36 [00:04<00:22, 1.36it/s]\n 19%|█▉ | 7/36 [00:05<00:21, 1.34it/s]\n 22%|██▏ | 8/36 [00:05<00:21, 1.30it/s]\n 25%|██▌ | 9/36 [00:06<00:21, 1.25it/s]\n 28%|██▊ | 10/36 [00:07<00:21, 1.23it/s]\n 31%|███ | 11/36 [00:08<00:21, 1.19it/s]\n 33%|███▎ | 12/36 [00:09<00:20, 1.15it/s]\n 36%|███▌ | 13/36 [00:10<00:20, 1.13it/s]\n 39%|███▉ | 14/36 [00:11<00:19, 1.12it/s]\n 42%|████▏ | 15/36 [00:12<00:18, 1.11it/s]\n 44%|████▍ | 16/36 [00:13<00:18, 1.10it/s]\n 47%|████▋ | 17/36 [00:14<00:17, 1.10it/s]\n 50%|█████ | 18/36 [00:14<00:16, 1.10it/s]\n 53%|█████▎ | 19/36 [00:15<00:15, 1.09it/s]\n 56%|█████▌ | 20/36 [00:16<00:14, 1.08it/s]\n 58%|█████▊ | 21/36 [00:17<00:13, 1.08it/s]\n 61%|██████ | 22/36 [00:18<00:12, 1.08it/s]\n 64%|██████▍ | 23/36 [00:19<00:11, 1.09it/s]\n 67%|██████▋ | 24/36 [00:20<00:11, 1.08it/s]\n 69%|██████▉ | 25/36 [00:21<00:10, 1.08it/s]\n 72%|███████▏ | 26/36 [00:22<00:09, 1.08it/s]\n 75%|███████▌ | 27/36 [00:23<00:08, 1.08it/s]\n 78%|███████▊ | 28/36 [00:24<00:07, 1.08it/s]\n 81%|████████ | 29/36 [00:25<00:06, 1.08it/s]\n 83%|████████▎ | 30/36 [00:26<00:05, 1.08it/s]\n 86%|████████▌ | 31/36 [00:26<00:04, 1.08it/s]\n 89%|████████▉ | 32/36 [00:27<00:03, 1.08it/s]\n 92%|█████████▏| 33/36 [00:28<00:02, 1.08it/s]\n 94%|█████████▍| 34/36 [00:29<00:01, 1.08it/s]\n 97%|█████████▋| 35/36 [00:30<00:00, 1.08it/s]\n100%|██████████| 36/36 [00:31<00:00, 1.08it/s]\n100%|██████████| 36/36 [00:31<00:00, 1.14it/s]",
"metrics": {
"predict_time": 44.949506,
"total_time": 452.850658
},
"output": "https://replicate.delivery/pbxt/HuWYFtJyyH50BxruGu1XfUleB3kC2NfbTy2fmHbeEwKS6BsGC/audio.wav",
"started_at": "2023-04-25T22:18:14.676132Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ngk3yp5omvdsvkcdoljxs2m4ra",
"cancel": "https://api.replicate.com/v1/predictions/ngk3yp5omvdsvkcdoljxs2m4ra/cancel"
},
"version": "f23937d7c80b3c0f06c5a01ec55154388647292cb9398bd7d117678bc930791a"
}
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:00<00:27, 3.65it/s]
3%|▎ | 3/100 [00:00<00:13, 7.12it/s]
5%|▌ | 5/100 [00:00<00:10, 8.90it/s]
7%|▋ | 7/100 [00:00<00:09, 9.98it/s]
9%|▉ | 9/100 [00:00<00:08, 10.54it/s]
11%|█ | 11/100 [00:01<00:08, 11.09it/s]
13%|█▎ | 13/100 [00:01<00:07, 11.16it/s]
15%|█▌ | 15/100 [00:01<00:07, 11.32it/s]
17%|█▋ | 17/100 [00:01<00:07, 11.66it/s]
19%|█▉ | 19/100 [00:01<00:06, 11.69it/s]
21%|██ | 21/100 [00:01<00:06, 12.05it/s]
23%|██▎ | 23/100 [00:02<00:06, 12.17it/s]
25%|██▌ | 25/100 [00:02<00:06, 11.89it/s]
27%|██▋ | 27/100 [00:02<00:06, 11.64it/s]
29%|██▉ | 29/100 [00:02<00:06, 11.51it/s]
31%|███ | 31/100 [00:02<00:05, 11.61it/s]
33%|███▎ | 33/100 [00:02<00:05, 11.88it/s]
35%|███▌ | 35/100 [00:03<00:05, 11.82it/s]
37%|███▋ | 37/100 [00:03<00:05, 11.75it/s]
39%|███▉ | 39/100 [00:03<00:05, 11.63it/s]
41%|████ | 41/100 [00:03<00:05, 11.64it/s]
43%|████▎ | 43/100 [00:03<00:04, 11.79it/s]
45%|████▌ | 45/100 [00:04<00:04, 11.94it/s]
47%|████▋ | 47/100 [00:04<00:04, 11.83it/s]
49%|████▉ | 49/100 [00:04<00:04, 11.89it/s]
51%|█████ | 51/100 [00:04<00:04, 11.70it/s]
53%|█████▎ | 53/100 [00:04<00:04, 11.56it/s]
55%|█████▌ | 55/100 [00:04<00:03, 11.64it/s]
57%|█████▋ | 57/100 [00:05<00:03, 11.63it/s]
59%|█████▉ | 59/100 [00:05<00:03, 11.38it/s]
61%|██████ | 61/100 [00:05<00:03, 11.38it/s]
63%|██████▎ | 63/100 [00:05<00:03, 11.07it/s]
65%|██████▌ | 65/100 [00:05<00:03, 11.19it/s]
67%|██████▋ | 67/100 [00:05<00:02, 11.28it/s]
69%|██████▉ | 69/100 [00:06<00:02, 11.08it/s]
71%|███████ | 71/100 [00:06<00:02, 11.11it/s]
73%|███████▎ | 73/100 [00:06<00:02, 10.91it/s]
75%|███████▌ | 75/100 [00:06<00:02, 10.78it/s]
77%|███████▋ | 77/100 [00:06<00:02, 10.83it/s]
79%|███████▉ | 79/100 [00:07<00:01, 10.86it/s]
81%|████████ | 81/100 [00:07<00:01, 10.64it/s]
83%|████████▎ | 83/100 [00:07<00:01, 10.67it/s]
85%|████████▌ | 85/100 [00:07<00:01, 10.57it/s]
87%|████████▋ | 87/100 [00:07<00:01, 10.34it/s]
89%|████████▉ | 89/100 [00:08<00:01, 10.39it/s]
91%|█████████ | 91/100 [00:08<00:00, 10.10it/s]
93%|█████████▎| 93/100 [00:08<00:00, 10.06it/s]
100%|██████████| 100/100 [00:08<00:00, 20.32it/s]
100%|██████████| 100/100 [00:08<00:00, 11.69it/s]
0%| | 0/36 [00:00<?, ?it/s]
3%|▎ | 1/36 [00:00<00:23, 1.48it/s]
6%|▌ | 2/36 [00:01<00:22, 1.48it/s]
8%|▊ | 3/36 [00:02<00:22, 1.45it/s]
11%|█ | 4/36 [00:02<00:22, 1.43it/s]
14%|█▍ | 5/36 [00:03<00:21, 1.41it/s]
17%|█▋ | 6/36 [00:04<00:22, 1.36it/s]
19%|█▉ | 7/36 [00:05<00:21, 1.34it/s]
22%|██▏ | 8/36 [00:05<00:21, 1.30it/s]
25%|██▌ | 9/36 [00:06<00:21, 1.25it/s]
28%|██▊ | 10/36 [00:07<00:21, 1.23it/s]
31%|███ | 11/36 [00:08<00:21, 1.19it/s]
33%|███▎ | 12/36 [00:09<00:20, 1.15it/s]
36%|███▌ | 13/36 [00:10<00:20, 1.13it/s]
39%|███▉ | 14/36 [00:11<00:19, 1.12it/s]
42%|████▏ | 15/36 [00:12<00:18, 1.11it/s]
44%|████▍ | 16/36 [00:13<00:18, 1.10it/s]
47%|████▋ | 17/36 [00:14<00:17, 1.10it/s]
50%|█████ | 18/36 [00:14<00:16, 1.10it/s]
53%|█████▎ | 19/36 [00:15<00:15, 1.09it/s]
56%|█████▌ | 20/36 [00:16<00:14, 1.08it/s]
58%|█████▊ | 21/36 [00:17<00:13, 1.08it/s]
61%|██████ | 22/36 [00:18<00:12, 1.08it/s]
64%|██████▍ | 23/36 [00:19<00:11, 1.09it/s]
67%|██████▋ | 24/36 [00:20<00:11, 1.08it/s]
69%|██████▉ | 25/36 [00:21<00:10, 1.08it/s]
72%|███████▏ | 26/36 [00:22<00:09, 1.08it/s]
75%|███████▌ | 27/36 [00:23<00:08, 1.08it/s]
78%|███████▊ | 28/36 [00:24<00:07, 1.08it/s]
81%|████████ | 29/36 [00:25<00:06, 1.08it/s]
83%|████████▎ | 30/36 [00:26<00:05, 1.08it/s]
86%|████████▌ | 31/36 [00:26<00:04, 1.08it/s]
89%|████████▉ | 32/36 [00:27<00:03, 1.08it/s]
92%|█████████▏| 33/36 [00:28<00:02, 1.08it/s]
94%|█████████▍| 34/36 [00:29<00:01, 1.08it/s]
97%|█████████▋| 35/36 [00:30<00:00, 1.08it/s]
100%|██████████| 36/36 [00:31<00:00, 1.08it/s]
100%|██████████| 36/36 [00:31<00:00, 1.14it/s]
This example was created by a different version, suno-ai/bark:f23937d7.