Readme
This model doesn't have a readme.
Flux lora, use "ps1 game screenshot" to trigger image generation
Oops – something went wrong. Refresh the page and try again.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run veryvanya/flux-ps1-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"veryvanya/flux-ps1-style:e785bcd326ea7a2c6efef8c43122a289f2c344370a4b74b2c7fa1a5ff4c38fea",
{
input: {
model: "dev",
prompt: "ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run veryvanya/flux-ps1-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"veryvanya/flux-ps1-style:e785bcd326ea7a2c6efef8c43122a289f2c344370a4b74b2c7fa1a5ff4c38fea",
input={
"model": "dev",
"prompt": "ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run veryvanya/flux-ps1-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "e785bcd326ea7a2c6efef8c43122a289f2c344370a4b74b2c7fa1a5ff4c38fea",
"input": {
"model": "dev",
"prompt": "ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/veryvanya/flux-ps1-style@sha256:e785bcd326ea7a2c6efef8c43122a289f2c344370a4b74b2c7fa1a5ff4c38fea \
-i 'model="dev"' \
-i 'prompt="ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/veryvanya/flux-ps1-style@sha256:e785bcd326ea7a2c6efef8c43122a289f2c344370a4b74b2c7fa1a5ff4c38fea
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.019. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-17T12:37:00.754947Z",
"created_at": "2024-08-17T12:36:09.186000Z",
"data_removed": false,
"error": null,
"id": "gj6t3d47c9rm00chc1ba44kweg",
"input": {
"model": "dev",
"prompt": "ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 5436\nPrompt: ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9708822564864\nDownloading weights\n2024-08-17T12:36:42Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/453cd68e27ee1122 url=https://replicate.delivery/yhqm/SOIIxBTWph4eZ6JY7ar89OOQ75fnCkg5GvKH8fD2HGzLZJnmA/trained_model.tar\n2024-08-17T12:36:43Z | INFO | [ Complete ] dest=/src/weights-cache/453cd68e27ee1122 size=\"172 MB\" total_elapsed=1.364s url=https://replicate.delivery/yhqm/SOIIxBTWph4eZ6JY7ar89OOQ75fnCkg5GvKH8fD2HGzLZJnmA/trained_model.tar\nb''\nDownloaded weights in 1.393646478652954 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.68it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.22it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.94it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.67it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.67it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]",
"metrics": {
"predict_time": 18.754054363,
"total_time": 51.568947
},
"output": [
"https://replicate.delivery/yhqm/rW1ulnke0vw0dK66DP8cVyvuu7i3t4QeRoEiDriDsWhstkTTA/out-0.webp"
],
"started_at": "2024-08-17T12:36:42.000893Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/gj6t3d47c9rm00chc1ba44kweg",
"cancel": "https://api.replicate.com/v1/predictions/gj6t3d47c9rm00chc1ba44kweg/cancel"
},
"version": "e785bcd326ea7a2c6efef8c43122a289f2c344370a4b74b2c7fa1a5ff4c38fea"
}
Using seed: 5436
Prompt: ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9708822564864
Downloading weights
2024-08-17T12:36:42Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/453cd68e27ee1122 url=https://replicate.delivery/yhqm/SOIIxBTWph4eZ6JY7ar89OOQ75fnCkg5GvKH8fD2HGzLZJnmA/trained_model.tar
2024-08-17T12:36:43Z | INFO | [ Complete ] dest=/src/weights-cache/453cd68e27ee1122 size="172 MB" total_elapsed=1.364s url=https://replicate.delivery/yhqm/SOIIxBTWph4eZ6JY7ar89OOQ75fnCkg5GvKH8fD2HGzLZJnmA/trained_model.tar
b''
Downloaded weights in 1.393646478652954 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.68it/s]
7%|▋ | 2/28 [00:00<00:06, 4.22it/s]
11%|█ | 3/28 [00:00<00:06, 3.94it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]
50%|█████ | 14/28 [00:03<00:03, 3.67it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]
61%|██████ | 17/28 [00:04<00:02, 3.67it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.69it/s]
This model costs approximately $0.019 to run on Replicate, or 52 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 13 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 5436
Prompt: ps1 game screenshot, a little strawberry hamster floating on a large green leaf on a gentle river
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9708822564864
Downloading weights
2024-08-17T12:36:42Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/453cd68e27ee1122 url=https://replicate.delivery/yhqm/SOIIxBTWph4eZ6JY7ar89OOQ75fnCkg5GvKH8fD2HGzLZJnmA/trained_model.tar
2024-08-17T12:36:43Z | INFO | [ Complete ] dest=/src/weights-cache/453cd68e27ee1122 size="172 MB" total_elapsed=1.364s url=https://replicate.delivery/yhqm/SOIIxBTWph4eZ6JY7ar89OOQ75fnCkg5GvKH8fD2HGzLZJnmA/trained_model.tar
b''
Downloaded weights in 1.393646478652954 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.68it/s]
7%|▋ | 2/28 [00:00<00:06, 4.22it/s]
11%|█ | 3/28 [00:00<00:06, 3.94it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]
50%|█████ | 14/28 [00:03<00:03, 3.67it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]
61%|██████ | 17/28 [00:04<00:02, 3.67it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.69it/s]