cudanexus
/
stickergp
- Public
- 337 runs
-
T4
Prediction
cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827IDrz3bx3zbvokmbcihijp3hvp6eiStatusSucceededSourceWebHardwareT4Total durationCreatedInput
- steps
- 20
- width
- 1024
- height
- 1024
- prompt
- a cute dog
- upscale
- upscale_steps
- 10
- negative_prompt
{ "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": false, "upscale_steps": 10, "negative_prompt": "" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", { input: { steps: 20, width: 1024, height: 1024, prompt: "a cute dog ", upscale: false, upscale_steps: 10, negative_prompt: "" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", input={ "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": False, "upscale_steps": 10, "negative_prompt": "" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", "input": { "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": false, "upscale_steps": 10, "negative_prompt": "" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-16T22:30:00.039291Z", "created_at": "2024-03-16T22:29:32.214331Z", "data_removed": false, "error": null, "id": "rz3bx3zbvokmbcihijp3hvp6ei", "input": { "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": false, "upscale_steps": 10, "negative_prompt": "" }, "logs": "Random seed set to: 3470438042\nChecking inputs\n====================================\nChecking weights\n✅ dreamshaper_8.safetensors\n✅ artificialguybr/StickersRedmond.safetensors\n✅ albedobaseXL_v13.safetensors\n✅ RMBG-1.4/model.pth\n✅ 4x-AnimeSharp.pth\n====================================\nRunning workflow\ngot prompt\nExecuting node 2, title: Efficient Loader, class type: Efficient Loader\nRequested to load SDXLClipModel\nLoading 1 new model\n----------------------------------------\n\u001b[36mEfficient Loader Models Cache:\u001b[0m\nCkpt:\n[1] albedobaseXL_v13\nLora:\n[1] base_ckpt: albedobaseXL_v13\nlora(mod,clip): StickersRedmond(1,1)\nExecuting node 4, title: KSampler (Efficient), class type: KSampler (Efficient)\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:16, 1.13it/s]\n 10%|█ | 2/20 [00:01<00:16, 1.12it/s]\n 15%|█▌ | 3/20 [00:02<00:15, 1.11it/s]\n 20%|██ | 4/20 [00:03<00:14, 1.10it/s]\n 25%|██▌ | 5/20 [00:04<00:13, 1.11it/s]\n 30%|███ | 6/20 [00:05<00:12, 1.10it/s]\n 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s]\n 40%|████ | 8/20 [00:07<00:10, 1.10it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.09it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.09it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.09it/s]\n 60%|██████ | 12/20 [00:10<00:07, 1.09it/s]\n 65%|██████▌ | 13/20 [00:11<00:06, 1.08it/s]\n 70%|███████ | 14/20 [00:12<00:05, 1.07it/s]\n 75%|███████▌ | 15/20 [00:13<00:04, 1.07it/s]\n 80%|████████ | 16/20 [00:14<00:03, 1.07it/s]\n 85%|████████▌ | 17/20 [00:15<00:02, 1.07it/s]\n 90%|█████████ | 18/20 [00:16<00:01, 1.07it/s]\n 95%|█████████▌| 19/20 [00:17<00:00, 1.07it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.08it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.09it/s]\nExecuting node 5, title: Save Image, class type: SaveImage\nExecuting node 9, title: 🧹BRIA RMBG, class type: BRIA_RMBG_Zho\nExecuting node 10, title: Save Image, class type: SaveImage\nPrompt executed in 26.98 seconds\noutputs: {'4': {'images': [{'filename': 'ComfyUI_temp_tzosl_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '5': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '10': {'images': [{'filename': 'ComfyUI_00002_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nContents of /tmp/outputs:\nComfyUI_00002_.png\nComfyUI_00001_.png", "metrics": { "predict_time": 27.809204, "total_time": 27.82496 }, "output": [ "https://replicate.delivery/pbxt/WT0S1FTNDd58FRCoH7Gvt8Nje8V7uvqpz7qqUZ65x1xze8gSA/ComfyUI_00002_.png", "https://replicate.delivery/pbxt/meCHP58LH0XzSSsZeeqCIMcDqc1RzqVyAenEDS59C8zfsnHUC/ComfyUI_00001_.png" ], "started_at": "2024-03-16T22:29:32.230087Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rz3bx3zbvokmbcihijp3hvp6ei", "cancel": "https://api.replicate.com/v1/predictions/rz3bx3zbvokmbcihijp3hvp6ei/cancel" }, "version": "6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827" }
Generated inRandom seed set to: 3470438042 Checking inputs ==================================== Checking weights ✅ dreamshaper_8.safetensors ✅ artificialguybr/StickersRedmond.safetensors ✅ albedobaseXL_v13.safetensors ✅ RMBG-1.4/model.pth ✅ 4x-AnimeSharp.pth ==================================== Running workflow got prompt Executing node 2, title: Efficient Loader, class type: Efficient Loader Requested to load SDXLClipModel Loading 1 new model ---------------------------------------- Efficient Loader Models Cache: Ckpt: [1] albedobaseXL_v13 Lora: [1] base_ckpt: albedobaseXL_v13 lora(mod,clip): StickersRedmond(1,1) Executing node 4, title: KSampler (Efficient), class type: KSampler (Efficient) 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:16, 1.13it/s] 10%|█ | 2/20 [00:01<00:16, 1.12it/s] 15%|█▌ | 3/20 [00:02<00:15, 1.11it/s] 20%|██ | 4/20 [00:03<00:14, 1.10it/s] 25%|██▌ | 5/20 [00:04<00:13, 1.11it/s] 30%|███ | 6/20 [00:05<00:12, 1.10it/s] 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s] 40%|████ | 8/20 [00:07<00:10, 1.10it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.09it/s] 50%|█████ | 10/20 [00:09<00:09, 1.09it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.09it/s] 60%|██████ | 12/20 [00:10<00:07, 1.09it/s] 65%|██████▌ | 13/20 [00:11<00:06, 1.08it/s] 70%|███████ | 14/20 [00:12<00:05, 1.07it/s] 75%|███████▌ | 15/20 [00:13<00:04, 1.07it/s] 80%|████████ | 16/20 [00:14<00:03, 1.07it/s] 85%|████████▌ | 17/20 [00:15<00:02, 1.07it/s] 90%|█████████ | 18/20 [00:16<00:01, 1.07it/s] 95%|█████████▌| 19/20 [00:17<00:00, 1.07it/s] 100%|██████████| 20/20 [00:18<00:00, 1.08it/s] 100%|██████████| 20/20 [00:18<00:00, 1.09it/s] Executing node 5, title: Save Image, class type: SaveImage Executing node 9, title: 🧹BRIA RMBG, class type: BRIA_RMBG_Zho Executing node 10, title: Save Image, class type: SaveImage Prompt executed in 26.98 seconds outputs: {'4': {'images': [{'filename': 'ComfyUI_temp_tzosl_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '5': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '10': {'images': [{'filename': 'ComfyUI_00002_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== Contents of /tmp/outputs: ComfyUI_00002_.png ComfyUI_00001_.png
Prediction
cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827IDa4pbrijbnzw73x3nddm7ybbwwyStatusSucceededSourceWebHardwareT4Total durationCreatedInput
- steps
- 20
- width
- 1024
- height
- 1024
- prompt
- a cute cat
- upscale
- upscale_steps
- 10
- negative_prompt
{ "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute cat", "upscale": true, "upscale_steps": 10, "negative_prompt": "" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", { input: { steps: 20, width: 1024, height: 1024, prompt: "a cute cat", upscale: true, upscale_steps: 10, negative_prompt: "" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", input={ "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute cat", "upscale": True, "upscale_steps": 10, "negative_prompt": "" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", "input": { "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute cat", "upscale": true, "upscale_steps": 10, "negative_prompt": "" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-16T22:29:15.821803Z", "created_at": "2024-03-16T22:22:31.840745Z", "data_removed": false, "error": null, "id": "a4pbrijbnzw73x3nddm7ybbwwy", "input": { "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute cat", "upscale": true, "upscale_steps": 10, "negative_prompt": "" }, "logs": "Random seed set to: 2464980607\nChecking inputs\n====================================\nChecking weights\n✅ dreamshaper_8.safetensors\n✅ artificialguybr/StickersRedmond.safetensors\n✅ albedobaseXL_v13.safetensors\n✅ RMBG-1.4/model.pth\n✅ 4x-AnimeSharp.pth\n====================================\nRunning workflow\ngot prompt\nExecuting node 3, title: LoRA Stacker, class type: LoRA Stacker\nExecuting node 2, title: Efficient Loader, class type: Efficient Loader\nRequested to load SDXLClipModel\nLoading 1 new model\n----------------------------------------\n\u001b[36mEfficient Loader Models Cache:\u001b[0m\nCkpt:\n[1] albedobaseXL_v13\nLora:\n[1] base_ckpt: albedobaseXL_v13\nlora(mod,clip): StickersRedmond(1,1)\nExecuting node 4, title: KSampler (Efficient), class type: KSampler (Efficient)\nRequested to load SDXL\nLoading 1 new model\nunload clone 1\n 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643.\nwarnings.warn(f\"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.\")\n 5%|▌ | 1/20 [00:01<00:25, 1.35s/it]\n 10%|█ | 2/20 [00:02<00:18, 1.05s/it]\n 15%|█▌ | 3/20 [00:02<00:15, 1.07it/s]\n 20%|██ | 4/20 [00:03<00:14, 1.13it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.17it/s]\n 30%|███ | 6/20 [00:05<00:11, 1.18it/s]\n 35%|███▌ | 7/20 [00:06<00:10, 1.20it/s]\n 40%|████ | 8/20 [00:07<00:09, 1.20it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.20it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.21it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.21it/s]\n 60%|██████ | 12/20 [00:10<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:11<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.23it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.23it/s]\n 85%|████████▌ | 17/20 [00:14<00:02, 1.23it/s]\n 90%|█████████ | 18/20 [00:15<00:01, 1.23it/s]\n 95%|█████████▌| 19/20 [00:16<00:00, 1.24it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.25it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.19it/s]\nRequested to load AutoencoderKL\nLoading 1 new model\nExecuting node 12, title: Load Checkpoint, class type: CheckpointLoaderSimple\nmodel_type EPS\nadm 0\nUsing pytorch attention in VAE\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nUsing pytorch attention in VAE\nmissing {'cond_stage_model.clip_l.logit_scale', 'cond_stage_model.clip_l.text_projection'}\nleft over keys: dict_keys(['cond_stage_model.clip_l.transformer.text_model.embeddings.position_ids'])\nloaded straight to GPU\nRequested to load BaseModel\nLoading 1 new model\nExecuting node 13, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nRequested to load SD1ClipModel\nLoading 1 new model\nExecuting node 14, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 15, title: Load Upscale Model, class type: UpscaleModelLoader\nExecuting node 11, title: Ultimate SD Upscale, class type: UltimateSDUpscale\nCanva size: 2048x2048\nImage size: 1024x1024\nScale factor: 2\nUpscaling iteration 1 with scale factor 2\nTile size: 512x512\nTiles amount: 16\nGrid: 4x4\nRedraw enabled: True\nSeams fix mode: NONE\nRequested to load AutoencoderKL\nLoading 1 new model\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:01, 5.13it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.27it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.65it/s]\n 50%|█████ | 5/10 [00:00<00:00, 6.18it/s]\n 60%|██████ | 6/10 [00:00<00:00, 6.16it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.91it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.87it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.89it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.82it/s]\n100%|██████████| 10/10 [00:01<00:00, 6.04it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 9.34it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.42it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.60it/s]\n 50%|█████ | 5/10 [00:00<00:00, 6.25it/s]\n 60%|██████ | 6/10 [00:00<00:00, 6.13it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.98it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.87it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.88it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.73it/s]\n100%|██████████| 10/10 [00:01<00:00, 6.17it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.73it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.42it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.70it/s]\n 50%|█████ | 5/10 [00:00<00:00, 6.03it/s]\n 60%|██████ | 6/10 [00:00<00:00, 6.02it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.92it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.84it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.81it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.73it/s]\n100%|██████████| 10/10 [00:01<00:00, 6.12it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 9.25it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.33it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.55it/s]\n 50%|█████ | 5/10 [00:00<00:00, 6.04it/s]\n 60%|██████ | 6/10 [00:00<00:00, 6.06it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.93it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.81it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.67it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.74it/s]\n100%|██████████| 10/10 [00:01<00:00, 6.11it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 9.14it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.27it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.54it/s]\n 50%|█████ | 5/10 [00:00<00:00, 6.06it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.76it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.83it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.71it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.76it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.64it/s]\n100%|██████████| 10/10 [00:01<00:00, 6.03it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 9.14it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.25it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.56it/s]\n 50%|█████ | 5/10 [00:00<00:00, 6.07it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.88it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.69it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.75it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.72it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.60it/s]\n100%|██████████| 10/10 [00:01<00:00, 6.01it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 9.07it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.16it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.48it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.91it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.83it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.73it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.66it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.69it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.58it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.96it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.98it/s]\n 30%|███ | 3/10 [00:00<00:01, 6.64it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.50it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.96it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.81it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.60it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.70it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.65it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.59it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.93it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 9.02it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.12it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.39it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.97it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.80it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.68it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.66it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.58it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.52it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.92it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.90it/s]\n 30%|███ | 3/10 [00:00<00:01, 6.96it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.31it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.91it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.71it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.64it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.61it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.54it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.48it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.86it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 9.20it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.18it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.35it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.87it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.80it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.69it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.66it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.51it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.50it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.90it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.91it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.07it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.21it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.92it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.70it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.61it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.57it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.54it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.48it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.85it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.96it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.04it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.20it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.88it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.66it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.60it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.56it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.52it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.39it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.80it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.91it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.05it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.11it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.69it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.66it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.60it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.55it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.50it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.44it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.80it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.37it/s]\n 30%|███ | 3/10 [00:00<00:01, 6.97it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.08it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.77it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.64it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.51it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.50it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.46it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.39it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.74it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 20%|██ | 2/10 [00:00<00:00, 8.59it/s]\n 30%|███ | 3/10 [00:00<00:01, 6.96it/s]\n 40%|████ | 4/10 [00:00<00:00, 6.00it/s]\n 50%|█████ | 5/10 [00:00<00:00, 5.73it/s]\n 60%|██████ | 6/10 [00:00<00:00, 5.64it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.58it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.50it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 5.41it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.37it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.74it/s]\nExecuting node 16, title: Save Image, class type: SaveImage\nExecuting node 8, title: 🧹BRIA_RMBG Model Loader, class type: BRIA_RMBG_ModelLoader_Zho\nExecuting node 17, title: 🧹BRIA RMBG, class type: BRIA_RMBG_Zho\nExecuting node 18, title: Save Image, class type: SaveImage\nPrompt executed in 109.63 seconds\noutputs: {'4': {'images': [{'filename': 'ComfyUI_temp_pbhrx_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '16': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '18': {'images': [{'filename': 'ComfyUI_00002_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nContents of /tmp/outputs:\nComfyUI_00002_.png\nComfyUI_00001_.png", "metrics": { "predict_time": 110.571632, "total_time": 403.981058 }, "output": [ "https://replicate.delivery/pbxt/o9HFMRQLTkL5ONecKXzTYZkXMQZk88qz1NeQ7D4mOCu788gSA/ComfyUI_00002_.png", "https://replicate.delivery/pbxt/adR0etUKmP0tIC8uWz40a9MGXfwH5LOiyssVTBYyZMn788gSA/ComfyUI_00001_.png" ], "started_at": "2024-03-16T22:27:25.250171Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/a4pbrijbnzw73x3nddm7ybbwwy", "cancel": "https://api.replicate.com/v1/predictions/a4pbrijbnzw73x3nddm7ybbwwy/cancel" }, "version": "6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827" }
Generated inRandom seed set to: 2464980607 Checking inputs ==================================== Checking weights ✅ dreamshaper_8.safetensors ✅ artificialguybr/StickersRedmond.safetensors ✅ albedobaseXL_v13.safetensors ✅ RMBG-1.4/model.pth ✅ 4x-AnimeSharp.pth ==================================== Running workflow got prompt Executing node 3, title: LoRA Stacker, class type: LoRA Stacker Executing node 2, title: Efficient Loader, class type: Efficient Loader Requested to load SDXLClipModel Loading 1 new model ---------------------------------------- Efficient Loader Models Cache: Ckpt: [1] albedobaseXL_v13 Lora: [1] base_ckpt: albedobaseXL_v13 lora(mod,clip): StickersRedmond(1,1) Executing node 4, title: KSampler (Efficient), class type: KSampler (Efficient) Requested to load SDXL Loading 1 new model unload clone 1 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643. warnings.warn(f"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.") 5%|▌ | 1/20 [00:01<00:25, 1.35s/it] 10%|█ | 2/20 [00:02<00:18, 1.05s/it] 15%|█▌ | 3/20 [00:02<00:15, 1.07it/s] 20%|██ | 4/20 [00:03<00:14, 1.13it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.17it/s] 30%|███ | 6/20 [00:05<00:11, 1.18it/s] 35%|███▌ | 7/20 [00:06<00:10, 1.20it/s] 40%|████ | 8/20 [00:07<00:09, 1.20it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.20it/s] 50%|█████ | 10/20 [00:08<00:08, 1.21it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.21it/s] 60%|██████ | 12/20 [00:10<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:11<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.23it/s] 80%|████████ | 16/20 [00:13<00:03, 1.23it/s] 85%|████████▌ | 17/20 [00:14<00:02, 1.23it/s] 90%|█████████ | 18/20 [00:15<00:01, 1.23it/s] 95%|█████████▌| 19/20 [00:16<00:00, 1.24it/s] 100%|██████████| 20/20 [00:16<00:00, 1.25it/s] 100%|██████████| 20/20 [00:16<00:00, 1.19it/s] Requested to load AutoencoderKL Loading 1 new model Executing node 12, title: Load Checkpoint, class type: CheckpointLoaderSimple model_type EPS adm 0 Using pytorch attention in VAE Working with z of shape (1, 4, 32, 32) = 4096 dimensions. Using pytorch attention in VAE missing {'cond_stage_model.clip_l.logit_scale', 'cond_stage_model.clip_l.text_projection'} left over keys: dict_keys(['cond_stage_model.clip_l.transformer.text_model.embeddings.position_ids']) loaded straight to GPU Requested to load BaseModel Loading 1 new model Executing node 13, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Requested to load SD1ClipModel Loading 1 new model Executing node 14, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 15, title: Load Upscale Model, class type: UpscaleModelLoader Executing node 11, title: Ultimate SD Upscale, class type: UltimateSDUpscale Canva size: 2048x2048 Image size: 1024x1024 Scale factor: 2 Upscaling iteration 1 with scale factor 2 Tile size: 512x512 Tiles amount: 16 Grid: 4x4 Redraw enabled: True Seams fix mode: NONE Requested to load AutoencoderKL Loading 1 new model 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:01, 5.13it/s] 30%|███ | 3/10 [00:00<00:00, 7.27it/s] 40%|████ | 4/10 [00:00<00:00, 6.65it/s] 50%|█████ | 5/10 [00:00<00:00, 6.18it/s] 60%|██████ | 6/10 [00:00<00:00, 6.16it/s] 70%|███████ | 7/10 [00:01<00:00, 5.91it/s] 80%|████████ | 8/10 [00:01<00:00, 5.87it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.89it/s] 100%|██████████| 10/10 [00:01<00:00, 5.82it/s] 100%|██████████| 10/10 [00:01<00:00, 6.04it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 9.34it/s] 30%|███ | 3/10 [00:00<00:00, 7.42it/s] 40%|████ | 4/10 [00:00<00:00, 6.60it/s] 50%|█████ | 5/10 [00:00<00:00, 6.25it/s] 60%|██████ | 6/10 [00:00<00:00, 6.13it/s] 70%|███████ | 7/10 [00:01<00:00, 5.98it/s] 80%|████████ | 8/10 [00:01<00:00, 5.87it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.88it/s] 100%|██████████| 10/10 [00:01<00:00, 5.73it/s] 100%|██████████| 10/10 [00:01<00:00, 6.17it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.73it/s] 30%|███ | 3/10 [00:00<00:00, 7.42it/s] 40%|████ | 4/10 [00:00<00:00, 6.70it/s] 50%|█████ | 5/10 [00:00<00:00, 6.03it/s] 60%|██████ | 6/10 [00:00<00:00, 6.02it/s] 70%|███████ | 7/10 [00:01<00:00, 5.92it/s] 80%|████████ | 8/10 [00:01<00:00, 5.84it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.81it/s] 100%|██████████| 10/10 [00:01<00:00, 5.73it/s] 100%|██████████| 10/10 [00:01<00:00, 6.12it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 9.25it/s] 30%|███ | 3/10 [00:00<00:00, 7.33it/s] 40%|████ | 4/10 [00:00<00:00, 6.55it/s] 50%|█████ | 5/10 [00:00<00:00, 6.04it/s] 60%|██████ | 6/10 [00:00<00:00, 6.06it/s] 70%|███████ | 7/10 [00:01<00:00, 5.93it/s] 80%|████████ | 8/10 [00:01<00:00, 5.81it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.67it/s] 100%|██████████| 10/10 [00:01<00:00, 5.74it/s] 100%|██████████| 10/10 [00:01<00:00, 6.11it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 9.14it/s] 30%|███ | 3/10 [00:00<00:00, 7.27it/s] 40%|████ | 4/10 [00:00<00:00, 6.54it/s] 50%|█████ | 5/10 [00:00<00:00, 6.06it/s] 60%|██████ | 6/10 [00:00<00:00, 5.76it/s] 70%|███████ | 7/10 [00:01<00:00, 5.83it/s] 80%|████████ | 8/10 [00:01<00:00, 5.71it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.76it/s] 100%|██████████| 10/10 [00:01<00:00, 5.64it/s] 100%|██████████| 10/10 [00:01<00:00, 6.03it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 9.14it/s] 30%|███ | 3/10 [00:00<00:00, 7.25it/s] 40%|████ | 4/10 [00:00<00:00, 6.56it/s] 50%|█████ | 5/10 [00:00<00:00, 6.07it/s] 60%|██████ | 6/10 [00:00<00:00, 5.88it/s] 70%|███████ | 7/10 [00:01<00:00, 5.69it/s] 80%|████████ | 8/10 [00:01<00:00, 5.75it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.72it/s] 100%|██████████| 10/10 [00:01<00:00, 5.60it/s] 100%|██████████| 10/10 [00:01<00:00, 6.01it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 9.07it/s] 30%|███ | 3/10 [00:00<00:00, 7.16it/s] 40%|████ | 4/10 [00:00<00:00, 6.48it/s] 50%|█████ | 5/10 [00:00<00:00, 5.91it/s] 60%|██████ | 6/10 [00:00<00:00, 5.83it/s] 70%|███████ | 7/10 [00:01<00:00, 5.73it/s] 80%|████████ | 8/10 [00:01<00:00, 5.66it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.69it/s] 100%|██████████| 10/10 [00:01<00:00, 5.58it/s] 100%|██████████| 10/10 [00:01<00:00, 5.96it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.98it/s] 30%|███ | 3/10 [00:00<00:01, 6.64it/s] 40%|████ | 4/10 [00:00<00:00, 6.50it/s] 50%|█████ | 5/10 [00:00<00:00, 5.96it/s] 60%|██████ | 6/10 [00:00<00:00, 5.81it/s] 70%|███████ | 7/10 [00:01<00:00, 5.60it/s] 80%|████████ | 8/10 [00:01<00:00, 5.70it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.65it/s] 100%|██████████| 10/10 [00:01<00:00, 5.59it/s] 100%|██████████| 10/10 [00:01<00:00, 5.93it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 9.02it/s] 30%|███ | 3/10 [00:00<00:00, 7.12it/s] 40%|████ | 4/10 [00:00<00:00, 6.39it/s] 50%|█████ | 5/10 [00:00<00:00, 5.97it/s] 60%|██████ | 6/10 [00:00<00:00, 5.80it/s] 70%|███████ | 7/10 [00:01<00:00, 5.68it/s] 80%|████████ | 8/10 [00:01<00:00, 5.66it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.58it/s] 100%|██████████| 10/10 [00:01<00:00, 5.52it/s] 100%|██████████| 10/10 [00:01<00:00, 5.92it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.90it/s] 30%|███ | 3/10 [00:00<00:01, 6.96it/s] 40%|████ | 4/10 [00:00<00:00, 6.31it/s] 50%|█████ | 5/10 [00:00<00:00, 5.91it/s] 60%|██████ | 6/10 [00:00<00:00, 5.71it/s] 70%|███████ | 7/10 [00:01<00:00, 5.64it/s] 80%|████████ | 8/10 [00:01<00:00, 5.61it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.54it/s] 100%|██████████| 10/10 [00:01<00:00, 5.48it/s] 100%|██████████| 10/10 [00:01<00:00, 5.86it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 9.20it/s] 30%|███ | 3/10 [00:00<00:00, 7.18it/s] 40%|████ | 4/10 [00:00<00:00, 6.35it/s] 50%|█████ | 5/10 [00:00<00:00, 5.87it/s] 60%|██████ | 6/10 [00:00<00:00, 5.80it/s] 70%|███████ | 7/10 [00:01<00:00, 5.69it/s] 80%|████████ | 8/10 [00:01<00:00, 5.66it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.51it/s] 100%|██████████| 10/10 [00:01<00:00, 5.50it/s] 100%|██████████| 10/10 [00:01<00:00, 5.90it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.91it/s] 30%|███ | 3/10 [00:00<00:00, 7.07it/s] 40%|████ | 4/10 [00:00<00:00, 6.21it/s] 50%|█████ | 5/10 [00:00<00:00, 5.92it/s] 60%|██████ | 6/10 [00:00<00:00, 5.70it/s] 70%|███████ | 7/10 [00:01<00:00, 5.61it/s] 80%|████████ | 8/10 [00:01<00:00, 5.57it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.54it/s] 100%|██████████| 10/10 [00:01<00:00, 5.48it/s] 100%|██████████| 10/10 [00:01<00:00, 5.85it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.96it/s] 30%|███ | 3/10 [00:00<00:00, 7.04it/s] 40%|████ | 4/10 [00:00<00:00, 6.20it/s] 50%|█████ | 5/10 [00:00<00:00, 5.88it/s] 60%|██████ | 6/10 [00:00<00:00, 5.66it/s] 70%|███████ | 7/10 [00:01<00:00, 5.60it/s] 80%|████████ | 8/10 [00:01<00:00, 5.56it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.52it/s] 100%|██████████| 10/10 [00:01<00:00, 5.39it/s] 100%|██████████| 10/10 [00:01<00:00, 5.80it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.91it/s] 30%|███ | 3/10 [00:00<00:00, 7.05it/s] 40%|████ | 4/10 [00:00<00:00, 6.11it/s] 50%|█████ | 5/10 [00:00<00:00, 5.69it/s] 60%|██████ | 6/10 [00:00<00:00, 5.66it/s] 70%|███████ | 7/10 [00:01<00:00, 5.60it/s] 80%|████████ | 8/10 [00:01<00:00, 5.55it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.50it/s] 100%|██████████| 10/10 [00:01<00:00, 5.44it/s] 100%|██████████| 10/10 [00:01<00:00, 5.80it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.37it/s] 30%|███ | 3/10 [00:00<00:01, 6.97it/s] 40%|████ | 4/10 [00:00<00:00, 6.08it/s] 50%|█████ | 5/10 [00:00<00:00, 5.77it/s] 60%|██████ | 6/10 [00:00<00:00, 5.64it/s] 70%|███████ | 7/10 [00:01<00:00, 5.51it/s] 80%|████████ | 8/10 [00:01<00:00, 5.50it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.46it/s] 100%|██████████| 10/10 [00:01<00:00, 5.39it/s] 100%|██████████| 10/10 [00:01<00:00, 5.74it/s] 0%| | 0/10 [00:00<?, ?it/s] 20%|██ | 2/10 [00:00<00:00, 8.59it/s] 30%|███ | 3/10 [00:00<00:01, 6.96it/s] 40%|████ | 4/10 [00:00<00:00, 6.00it/s] 50%|█████ | 5/10 [00:00<00:00, 5.73it/s] 60%|██████ | 6/10 [00:00<00:00, 5.64it/s] 70%|███████ | 7/10 [00:01<00:00, 5.58it/s] 80%|████████ | 8/10 [00:01<00:00, 5.50it/s] 90%|█████████ | 9/10 [00:01<00:00, 5.41it/s] 100%|██████████| 10/10 [00:01<00:00, 5.37it/s] 100%|██████████| 10/10 [00:01<00:00, 5.74it/s] Executing node 16, title: Save Image, class type: SaveImage Executing node 8, title: 🧹BRIA_RMBG Model Loader, class type: BRIA_RMBG_ModelLoader_Zho Executing node 17, title: 🧹BRIA RMBG, class type: BRIA_RMBG_Zho Executing node 18, title: Save Image, class type: SaveImage Prompt executed in 109.63 seconds outputs: {'4': {'images': [{'filename': 'ComfyUI_temp_pbhrx_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '16': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '18': {'images': [{'filename': 'ComfyUI_00002_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== Contents of /tmp/outputs: ComfyUI_00002_.png ComfyUI_00001_.png
Prediction
cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827IDgmpxttjbhbf6kk5qcqvmp2lywiStatusSucceededSourceWebHardwareT4Total durationCreatedInput
- steps
- 20
- width
- 1024
- height
- 1024
- prompt
- a cute dog
- upscale
- upscale_steps
- 10
- negative_prompt
{ "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": false, "upscale_steps": 10, "negative_prompt": "" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", { input: { steps: 20, width: 1024, height: 1024, prompt: "a cute dog ", upscale: false, upscale_steps: 10, negative_prompt: "" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cudanexus/stickergp:6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", input={ "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": False, "upscale_steps": 10, "negative_prompt": "" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run cudanexus/stickergp using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827", "input": { "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": false, "upscale_steps": 10, "negative_prompt": "" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-16T22:30:43.605812Z", "created_at": "2024-03-16T22:30:19.774136Z", "data_removed": false, "error": null, "id": "gmpxttjbhbf6kk5qcqvmp2lywi", "input": { "steps": 20, "width": 1024, "height": 1024, "prompt": "a cute dog ", "upscale": false, "upscale_steps": 10, "negative_prompt": "" }, "logs": "Random seed set to: 335342467\nChecking inputs\n====================================\nChecking weights\n✅ dreamshaper_8.safetensors\n✅ artificialguybr/StickersRedmond.safetensors\n✅ albedobaseXL_v13.safetensors\n✅ RMBG-1.4/model.pth\n✅ 4x-AnimeSharp.pth\n====================================\nRunning workflow\ngot prompt\nExecuting node 4, title: KSampler (Efficient), class type: KSampler (Efficient)\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.05it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.05it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.05it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.03it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.03it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.03it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.03it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.01it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.01it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.01it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.00it/s]\n 75%|███████▌ | 15/20 [00:14<00:05, 1.00s/it]\n 80%|████████ | 16/20 [00:15<00:04, 1.01s/it]\n 85%|████████▌ | 17/20 [00:16<00:03, 1.01s/it]\n 90%|█████████ | 18/20 [00:17<00:02, 1.01s/it]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.00it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.02it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.02it/s]\nExecuting node 5, title: Save Image, class type: SaveImage\nExecuting node 9, title: 🧹BRIA RMBG, class type: BRIA_RMBG_Zho\nExecuting node 10, title: Save Image, class type: SaveImage\nPrompt executed in 22.93 seconds\noutputs: {'4': {'images': [{'filename': 'ComfyUI_temp_vachq_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '5': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '10': {'images': [{'filename': 'ComfyUI_00002_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nContents of /tmp/outputs:\nComfyUI_00002_.png\nComfyUI_00001_.png", "metrics": { "predict_time": 23.777258, "total_time": 23.831676 }, "output": [ "https://replicate.delivery/pbxt/GDsLeWf4EcteVIQlZy8THs4xB9lIX10fcEuV4VtVsK0O5zDKB/ComfyUI_00002_.png", "https://replicate.delivery/pbxt/AnYTpwNzfrwFZ6QkwftaPlLMhC0XKz7TwADIyka6wTzTe5BlA/ComfyUI_00001_.png" ], "started_at": "2024-03-16T22:30:19.828554Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gmpxttjbhbf6kk5qcqvmp2lywi", "cancel": "https://api.replicate.com/v1/predictions/gmpxttjbhbf6kk5qcqvmp2lywi/cancel" }, "version": "6ffeac3440d7f79fe412021e0a2d28b03a43062c090cc0c625d3a73f0aa1f827" }
Generated inRandom seed set to: 335342467 Checking inputs ==================================== Checking weights ✅ dreamshaper_8.safetensors ✅ artificialguybr/StickersRedmond.safetensors ✅ albedobaseXL_v13.safetensors ✅ RMBG-1.4/model.pth ✅ 4x-AnimeSharp.pth ==================================== Running workflow got prompt Executing node 4, title: KSampler (Efficient), class type: KSampler (Efficient) 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s] 20%|██ | 4/20 [00:03<00:15, 1.05it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.05it/s] 30%|███ | 6/20 [00:05<00:13, 1.05it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.03it/s] 40%|████ | 8/20 [00:07<00:11, 1.03it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.03it/s] 50%|█████ | 10/20 [00:09<00:09, 1.03it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.01it/s] 60%|██████ | 12/20 [00:11<00:07, 1.01it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.01it/s] 70%|███████ | 14/20 [00:13<00:05, 1.00it/s] 75%|███████▌ | 15/20 [00:14<00:05, 1.00s/it] 80%|████████ | 16/20 [00:15<00:04, 1.01s/it] 85%|████████▌ | 17/20 [00:16<00:03, 1.01s/it] 90%|█████████ | 18/20 [00:17<00:02, 1.01s/it] 95%|█████████▌| 19/20 [00:18<00:00, 1.00it/s] 100%|██████████| 20/20 [00:19<00:00, 1.02it/s] 100%|██████████| 20/20 [00:19<00:00, 1.02it/s] Executing node 5, title: Save Image, class type: SaveImage Executing node 9, title: 🧹BRIA RMBG, class type: BRIA_RMBG_Zho Executing node 10, title: Save Image, class type: SaveImage Prompt executed in 22.93 seconds outputs: {'4': {'images': [{'filename': 'ComfyUI_temp_vachq_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '5': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '10': {'images': [{'filename': 'ComfyUI_00002_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== Contents of /tmp/outputs: ComfyUI_00002_.png ComfyUI_00001_.png
Want to make some of these yourself?
Run this model