fofr / epicrealismxl-lightning-hades
Fast and high quality lightning model, epiCRealismXL-Lightning Hades
Prediction
fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605aIDj7v1ttgnksrgp0cfwcsbatzz2mStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1024
- height
- 1024
- prompt
- A vibrant portrait photo, pink hair
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "A vibrant portrait photo, pink hair", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", { input: { width: 1024, height: 1024, prompt: "A vibrant portrait photo, pink hair", output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", input={ "width": 1024, "height": 1024, "prompt": "A vibrant portrait photo, pink hair", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", "input": { "width": 1024, "height": 1024, "prompt": "A vibrant portrait photo, pink hair", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="A vibrant portrait photo, pink hair"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt=""' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A vibrant portrait photo, pink hair", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-06-04T12:21:03.615007Z", "created_at": "2024-06-04T12:21:01.470000Z", "data_removed": false, "error": null, "id": "j7v1ttgnksrgp0cfwcsbatzz2m", "input": { "width": 1024, "height": 1024, "prompt": "A vibrant portrait photo, pink hair", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 567075403\nRunning workflow\ngot prompt\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:00, 9.03it/s]\n 50%|█████ | 2/4 [00:00<00:00, 6.68it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 7.58it/s]\n100%|██████████| 4/4 [00:00<00:00, 8.14it/s]\n100%|██████████| 4/4 [00:00<00:00, 7.88it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 0.95 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 2.107469, "total_time": 2.145007 }, "output": [ "https://replicate.delivery/pbxt/2lsf2M0djAQKTKlsTS51fVAJ6Rnimt4f9QNegu3jnDZ6KusLB/R8__00001_.webp" ], "started_at": "2024-06-04T12:21:01.507538Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/j7v1ttgnksrgp0cfwcsbatzz2m", "cancel": "https://api.replicate.com/v1/predictions/j7v1ttgnksrgp0cfwcsbatzz2m/cancel" }, "version": "0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a" }
Generated inRandom seed set to: 567075403 Running workflow got prompt Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:00, 9.03it/s] 50%|█████ | 2/4 [00:00<00:00, 6.68it/s] 75%|███████▌ | 3/4 [00:00<00:00, 7.58it/s] 100%|██████████| 4/4 [00:00<00:00, 8.14it/s] 100%|██████████| 4/4 [00:00<00:00, 7.88it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 0.95 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605aIDpskq8vvmtxrgp0cfwcs8cedbcrStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A landscape photo of a volcano erupting
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "A landscape photo of a volcano erupting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", { input: { width: 1024, height: 1024, prompt: "A landscape photo of a volcano erupting", output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", input={ "width": 1024, "height": 1024, "prompt": "A landscape photo of a volcano erupting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", "input": { "width": 1024, "height": 1024, "prompt": "A landscape photo of a volcano erupting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="A landscape photo of a volcano erupting"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt=""' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A landscape photo of a volcano erupting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-06-04T12:21:28.105959Z", "created_at": "2024-06-04T12:21:25.847000Z", "data_removed": false, "error": null, "id": "pskq8vvmtxrgp0cfwcs8cedbcr", "input": { "width": 1024, "height": 1024, "prompt": "A landscape photo of a volcano erupting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 1697150213\nRunning workflow\ngot prompt\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:00, 9.02it/s]\n 50%|█████ | 2/4 [00:00<00:00, 8.88it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 8.95it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.07it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.02it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 0.90 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 2.220588, "total_time": 2.258959 }, "output": [ "https://replicate.delivery/pbxt/PfGXBliN6cTACa62eKP4OSiLSpzRJfKpvdjgZ8vlr7iOGX2lA/R8__00001_.webp" ], "started_at": "2024-06-04T12:21:25.885371Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pskq8vvmtxrgp0cfwcs8cedbcr", "cancel": "https://api.replicate.com/v1/predictions/pskq8vvmtxrgp0cfwcs8cedbcr/cancel" }, "version": "0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a" }
Generated inRandom seed set to: 1697150213 Running workflow got prompt Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:00, 9.02it/s] 50%|█████ | 2/4 [00:00<00:00, 8.88it/s] 75%|███████▌ | 3/4 [00:00<00:00, 8.95it/s] 100%|██████████| 4/4 [00:00<00:00, 9.07it/s] 100%|██████████| 4/4 [00:00<00:00, 9.02it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 0.90 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605aID6ctn3a4v31rgj0cfwcsr16g5zmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a living room interior
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a living room interior", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", { input: { width: 1024, height: 1024, prompt: "a living room interior", output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", input={ "width": 1024, "height": 1024, "prompt": "a living room interior", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", "input": { "width": 1024, "height": 1024, "prompt": "a living room interior", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="a living room interior"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt=""' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a living room interior", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-06-04T12:22:43.518053Z", "created_at": "2024-06-04T12:22:41.176000Z", "data_removed": false, "error": null, "id": "6ctn3a4v31rgj0cfwcsr16g5zm", "input": { "width": 1024, "height": 1024, "prompt": "a living room interior", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 1247663501\nRunning workflow\ngot prompt\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:00, 9.10it/s]\n 50%|█████ | 2/4 [00:00<00:00, 8.94it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 8.97it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.07it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.03it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 0.88 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 2.304002, "total_time": 2.342053 }, "output": [ "https://replicate.delivery/pbxt/cczcfiIqqH0yWSVC6cC4pKLuKv0nKcZl1CfNOGUwy4kSkL7SA/R8__00001_.webp" ], "started_at": "2024-06-04T12:22:41.214051Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6ctn3a4v31rgj0cfwcsr16g5zm", "cancel": "https://api.replicate.com/v1/predictions/6ctn3a4v31rgj0cfwcsr16g5zm/cancel" }, "version": "0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a" }
Generated inRandom seed set to: 1247663501 Running workflow got prompt Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:00, 9.10it/s] 50%|█████ | 2/4 [00:00<00:00, 8.94it/s] 75%|███████▌ | 3/4 [00:00<00:00, 8.97it/s] 100%|██████████| 4/4 [00:00<00:00, 9.07it/s] 100%|██████████| 4/4 [00:00<00:00, 9.03it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 0.88 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605aID6vjt3h1h51rgm0cfwczs5f9x68StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1024
- height
- 1024
- prompt
- a dreamy ethereal painting
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a dreamy ethereal painting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", { input: { width: 1024, height: 1024, prompt: "a dreamy ethereal painting", output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", input={ "width": 1024, "height": 1024, "prompt": "a dreamy ethereal painting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", "input": { "width": 1024, "height": 1024, "prompt": "a dreamy ethereal painting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="a dreamy ethereal painting"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt=""' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a dreamy ethereal painting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-06-04T12:35:21.757479Z", "created_at": "2024-06-04T12:35:20.488000Z", "data_removed": false, "error": null, "id": "6vjt3h1h51rgm0cfwczs5f9x68", "input": { "width": 1024, "height": 1024, "prompt": "a dreamy ethereal painting", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 876088440\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:00, 9.03it/s]\n 50%|█████ | 2/4 [00:00<00:00, 8.83it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 8.92it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.07it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.01it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 0.84 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 1.254274, "total_time": 1.269479 }, "output": [ "https://replicate.delivery/pbxt/JfZi8rZqEkQuVaKeoqwprM5tXXjKuumM0FFfB3QhjeynAvsLB/R8__00001_.webp" ], "started_at": "2024-06-04T12:35:20.503205Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6vjt3h1h51rgm0cfwczs5f9x68", "cancel": "https://api.replicate.com/v1/predictions/6vjt3h1h51rgm0cfwczs5f9x68/cancel" }, "version": "0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a" }
Generated inRandom seed set to: 876088440 Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:00, 9.03it/s] 50%|█████ | 2/4 [00:00<00:00, 8.83it/s] 75%|███████▌ | 3/4 [00:00<00:00, 8.92it/s] 100%|██████████| 4/4 [00:00<00:00, 9.07it/s] 100%|██████████| 4/4 [00:00<00:00, 9.01it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 0.84 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605aIDnah4jqf4phrgg0cfwd7bs0kbtrStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- epic realism xl lightning hades
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "epic realism xl lightning hades", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", { input: { width: 1024, height: 1024, prompt: "epic realism xl lightning hades", output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", input={ "width": 1024, "height": 1024, "prompt": "epic realism xl lightning hades", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", "input": { "width": 1024, "height": 1024, "prompt": "epic realism xl lightning hades", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="epic realism xl lightning hades"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt=""' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "epic realism xl lightning hades", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-06-04T12:52:31.029927Z", "created_at": "2024-06-04T12:52:29.492000Z", "data_removed": false, "error": null, "id": "nah4jqf4phrgg0cfwd7bs0kbtr", "input": { "width": 1024, "height": 1024, "prompt": "epic realism xl lightning hades", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 3660731435\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:00, 9.04it/s]\n 50%|█████ | 2/4 [00:00<00:00, 8.87it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 8.94it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.06it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.01it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 0.84 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 1.522894, "total_time": 1.537927 }, "output": [ "https://replicate.delivery/pbxt/unYIcSru50IiGZYrkCdJwEspE9fyRHsdZeAzEvMRpqAOAM7SA/R8__00001_.webp" ], "started_at": "2024-06-04T12:52:29.507033Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nah4jqf4phrgg0cfwd7bs0kbtr", "cancel": "https://api.replicate.com/v1/predictions/nah4jqf4phrgg0cfwd7bs0kbtr/cancel" }, "version": "0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a" }
Generated inRandom seed set to: 3660731435 Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:00, 9.04it/s] 50%|█████ | 2/4 [00:00<00:00, 8.87it/s] 75%|███████▌ | 3/4 [00:00<00:00, 8.94it/s] 100%|██████████| 4/4 [00:00<00:00, 9.06it/s] 100%|██████████| 4/4 [00:00<00:00, 9.01it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 0.84 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605aID1gnfg20jpdrgm0cfwf9r9w87dmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1024
- height
- 1024
- prompt
- A portrait photo, pink hair, lightning storm
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "A portrait photo, pink hair, lightning storm", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", { input: { width: 1024, height: 1024, prompt: "A portrait photo, pink hair, lightning storm", output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", input={ "width": 1024, "height": 1024, "prompt": "A portrait photo, pink hair, lightning storm", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/epicrealismxl-lightning-hades using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/epicrealismxl-lightning-hades:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a", "input": { "width": 1024, "height": 1024, "prompt": "A portrait photo, pink hair, lightning storm", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="A portrait photo, pink hair, lightning storm"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt=""' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/epicrealismxl-lightning-hades@sha256:0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A portrait photo, pink hair, lightning storm", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-06-04T15:16:54.106857Z", "created_at": "2024-06-04T15:16:52.019000Z", "data_removed": false, "error": null, "id": "1gnfg20jpdrgm0cfwf9r9w87dm", "input": { "width": 1024, "height": 1024, "prompt": "A portrait photo, pink hair, lightning storm", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 1118202533\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:00, 9.12it/s]\n 50%|█████ | 2/4 [00:00<00:00, 8.97it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 9.05it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.16it/s]\n100%|██████████| 4/4 [00:00<00:00, 9.11it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 0.84 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 2.042133, "total_time": 2.087857 }, "output": [ "https://replicate.delivery/pbxt/ulYZRIyAUDYpOZfl7OjhrKxxzZhSjddNP1hguuZxyq6yDndJA/R8__00001_.webp" ], "started_at": "2024-06-04T15:16:52.064724Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/1gnfg20jpdrgm0cfwf9r9w87dm", "cancel": "https://api.replicate.com/v1/predictions/1gnfg20jpdrgm0cfwf9r9w87dm/cancel" }, "version": "0ca10b1fd361c1c5568720736411eaa89d9684415eb61fd36875b4d3c20f605a" }
Generated inRandom seed set to: 1118202533 Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:00, 9.12it/s] 50%|█████ | 2/4 [00:00<00:00, 8.97it/s] 75%|███████▌ | 3/4 [00:00<00:00, 9.05it/s] 100%|██████████| 4/4 [00:00<00:00, 9.16it/s] 100%|██████████| 4/4 [00:00<00:00, 9.11it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 0.84 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Want to make some of these yourself?
Run this model