jyoung105 / stable-cascade

Würstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models

  • Public
  • 71 runs
  • L40S
  • GitHub
  • Weights
  • Paper
  • License

Input

string
Shift + Return to add a new line

Input prompt, text of what you want to generate.

string
Shift + Return to add a new line

Input negative prompt, text of what you don't want to generate.

integer
(minimum: 1, maximum: 2048)

Width of the output image.

Default: 1024

integer
(minimum: 1, maximum: 2048)

Height of the output image.

Default: 1024

integer
(minimum: 1, maximum: 4)

Number of output images.

Default: 1

integer
(minimum: 1, maximum: 50)

Number of denoising steps in prior.

Default: 20

integer
(minimum: 1, maximum: 50)

Number of denoising steps in decoder.

Default: 10

number
(minimum: 0, maximum: 20)

Scale for classifier-free guidance in prior.

Default: 4

number
(minimum: 0, maximum: 20)

Scale for classifier-free guidance in decoder.

Default: 0

integer

Random seed. Leave blank to randomize the seed.

Output

output
Generated in

This output was created using a different version of the model, jyoung105/stable-cascade:8421cef7.

Run time and cost

This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.

Readme

This model doesn't have a readme.