tencent / hunyuan3d-2mv
Hunyuan3D-2mv is finetuned from Hunyuan3D-2 to support multiview controlled shape generation.
Prediction
tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5dbIDeqwj125w49rma0cnndnshejjt0StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- seed
- 1234
- steps
- 30
- file_type
- glb
- num_chunks
- 200000
- guidance_scale
- 5
- randomize_seed
- target_face_num
- 10000
- octree_resolution
- 256
- remove_background
{ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQDa08U70zRdtFwVMUi8ZaWdq5sQlEvAwIMUGclPdvXPB3F/dog-back.png", "left_image": "https://replicate.delivery/pbxt/MgQDZJS16youpmSRI4AXOvz6Uy9aoytAqWbMNs5nqDSz7s8Q/dog-left.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQDa20qDRJIz3syhW8ayY4ledfz1JDIwV6n4txkidmWZ0p9/dog-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", { input: { seed: 1234, steps: 30, file_type: "glb", back_image: "https://replicate.delivery/pbxt/MgQDa08U70zRdtFwVMUi8ZaWdq5sQlEvAwIMUGclPdvXPB3F/dog-back.png", left_image: "https://replicate.delivery/pbxt/MgQDZJS16youpmSRI4AXOvz6Uy9aoytAqWbMNs5nqDSz7s8Q/dog-left.png", num_chunks: 200000, front_image: "https://replicate.delivery/pbxt/MgQDa20qDRJIz3syhW8ayY4ledfz1JDIwV6n4txkidmWZ0p9/dog-front.png", guidance_scale: 5, randomize_seed: true, target_face_num: 10000, octree_resolution: 256, remove_background: true } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", input={ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQDa08U70zRdtFwVMUi8ZaWdq5sQlEvAwIMUGclPdvXPB3F/dog-back.png", "left_image": "https://replicate.delivery/pbxt/MgQDZJS16youpmSRI4AXOvz6Uy9aoytAqWbMNs5nqDSz7s8Q/dog-left.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQDa20qDRJIz3syhW8ayY4ledfz1JDIwV6n4txkidmWZ0p9/dog-front.png", "guidance_scale": 5, "randomize_seed": True, "target_face_num": 10000, "octree_resolution": 256, "remove_background": True } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQDa08U70zRdtFwVMUi8ZaWdq5sQlEvAwIMUGclPdvXPB3F/dog-back.png", "left_image": "https://replicate.delivery/pbxt/MgQDZJS16youpmSRI4AXOvz6Uy9aoytAqWbMNs5nqDSz7s8Q/dog-left.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQDa20qDRJIz3syhW8ayY4ledfz1JDIwV6n4txkidmWZ0p9/dog-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Loading...{ "completed_at": "2025-03-18T22:45:07.604995Z", "created_at": "2025-03-18T22:41:59.330000Z", "data_removed": false, "error": null, "id": "eqwj125w49rma0cnndnshejjt0", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQDa08U70zRdtFwVMUi8ZaWdq5sQlEvAwIMUGclPdvXPB3F/dog-back.png", "left_image": "https://replicate.delivery/pbxt/MgQDZJS16youpmSRI4AXOvz6Uy9aoytAqWbMNs5nqDSz7s8Q/dog-left.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQDa20qDRJIz3syhW8ayY4ledfz1JDIwV6n4txkidmWZ0p9/dog-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }, "logs": "Diffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s]\nDiffusion Sampling:: 3%|▎ | 1/30 [00:00<00:05, 5.54it/s]\nDiffusion Sampling:: 10%|█ | 3/30 [00:00<00:03, 8.48it/s]\nDiffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 7.84it/s]\nDiffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.49it/s]\nDiffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.27it/s]\nDiffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.13it/s]\nDiffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.04it/s]\nDiffusion Sampling:: 30%|███ | 9/30 [00:01<00:03, 6.98it/s]\nDiffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 6.93it/s]\nDiffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 6.89it/s]\nDiffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 6.86it/s]\nDiffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.83it/s]\nDiffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.83it/s]\nDiffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.66it/s]\nDiffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.69it/s]\nDiffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.89it/s]\nDiffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.86it/s]\nDiffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.84it/s]\nDiffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.82it/s]\nDiffusion Sampling:: 70%|███████ | 21/30 [00:03<00:01, 6.81it/s]\nDiffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.82it/s]\nDiffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.81it/s]\nDiffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.80it/s]\nDiffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.80it/s]\nDiffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.80it/s]\nDiffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.80it/s]\nDiffusion Sampling:: 93%|█████████▎| 28/30 [00:04<00:00, 6.80it/s]\nDiffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.80it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.79it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.91it/s]\nVolume Decoding: 0%| | 0/85 [00:00<?, ?it/s]\nVolume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 376.65it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 32.82it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 38.67it/s]\nShape generation took 9.84 seconds\nCreated new folder: outputs/d1d5f5b6-f539-4250-b240-246967c21765", "metrics": { "predict_time": 13.416263369, "total_time": 188.274995 }, "output": "https://replicate.delivery/xezq/N4fmeq35Fjp2MUVFRoJvrqkhNUVTavbK1fX2KX41eWoMXqnRB/gray_mesh.glb", "started_at": "2025-03-18T22:44:54.188732Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-7q5gssj3ntztkcqxh5jslf52tpaznodfbhs6rxzk5xw23cvp7fga", "get": "https://api.replicate.com/v1/predictions/eqwj125w49rma0cnndnshejjt0", "cancel": "https://api.replicate.com/v1/predictions/eqwj125w49rma0cnndnshejjt0/cancel" }, "version": "71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db" }
Generated inDiffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s] Diffusion Sampling:: 3%|▎ | 1/30 [00:00<00:05, 5.54it/s] Diffusion Sampling:: 10%|█ | 3/30 [00:00<00:03, 8.48it/s] Diffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 7.84it/s] Diffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.49it/s] Diffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.27it/s] Diffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.13it/s] Diffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.04it/s] Diffusion Sampling:: 30%|███ | 9/30 [00:01<00:03, 6.98it/s] Diffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 6.93it/s] Diffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 6.89it/s] Diffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 6.86it/s] Diffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.83it/s] Diffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.83it/s] Diffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.66it/s] Diffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.69it/s] Diffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.89it/s] Diffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.86it/s] Diffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.84it/s] Diffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.82it/s] Diffusion Sampling:: 70%|███████ | 21/30 [00:03<00:01, 6.81it/s] Diffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.82it/s] Diffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.81it/s] Diffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.80it/s] Diffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.80it/s] Diffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.80it/s] Diffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.80it/s] Diffusion Sampling:: 93%|█████████▎| 28/30 [00:04<00:00, 6.80it/s] Diffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.80it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.79it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.91it/s] Volume Decoding: 0%| | 0/85 [00:00<?, ?it/s] Volume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 376.65it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 32.82it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 38.67it/s] Shape generation took 9.84 seconds Created new folder: outputs/d1d5f5b6-f539-4250-b240-246967c21765
Prediction
tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5dbInput
- seed
- 1234
- steps
- 30
- file_type
- glb
- num_chunks
- 200000
- guidance_scale
- 5
- randomize_seed
- target_face_num
- 10000
- octree_resolution
- 256
- remove_background
{ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQTJZJpLfwXQc6N8rcxSAVGGf2GSGWAFYSqyKQyUVadSfiv/dog2-back.png", "left_image": "https://replicate.delivery/pbxt/MgQTKA8In6bsulSoqMd1pp6lhRFmacbXOJuK9swVdknRJSbR/dog2-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQTJRO3p8S9ToUYyoMkWLm5edO6y7DZKqP9OZWhYG3zUFtM/dog2-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", { input: { seed: 1234, steps: 30, file_type: "glb", back_image: "https://replicate.delivery/pbxt/MgQTJZJpLfwXQc6N8rcxSAVGGf2GSGWAFYSqyKQyUVadSfiv/dog2-back.png", left_image: "https://replicate.delivery/pbxt/MgQTKA8In6bsulSoqMd1pp6lhRFmacbXOJuK9swVdknRJSbR/dog2-side.png", num_chunks: 200000, front_image: "https://replicate.delivery/pbxt/MgQTJRO3p8S9ToUYyoMkWLm5edO6y7DZKqP9OZWhYG3zUFtM/dog2-front.png", guidance_scale: 5, randomize_seed: true, target_face_num: 10000, octree_resolution: 256, remove_background: true } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", input={ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQTJZJpLfwXQc6N8rcxSAVGGf2GSGWAFYSqyKQyUVadSfiv/dog2-back.png", "left_image": "https://replicate.delivery/pbxt/MgQTKA8In6bsulSoqMd1pp6lhRFmacbXOJuK9swVdknRJSbR/dog2-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQTJRO3p8S9ToUYyoMkWLm5edO6y7DZKqP9OZWhYG3zUFtM/dog2-front.png", "guidance_scale": 5, "randomize_seed": True, "target_face_num": 10000, "octree_resolution": 256, "remove_background": True } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQTJZJpLfwXQc6N8rcxSAVGGf2GSGWAFYSqyKQyUVadSfiv/dog2-back.png", "left_image": "https://replicate.delivery/pbxt/MgQTKA8In6bsulSoqMd1pp6lhRFmacbXOJuK9swVdknRJSbR/dog2-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQTJRO3p8S9ToUYyoMkWLm5edO6y7DZKqP9OZWhYG3zUFtM/dog2-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Loading...{ "completed_at": "2025-03-18T22:58:49.577033Z", "created_at": "2025-03-18T22:58:35.477000Z", "data_removed": false, "error": null, "id": "0p73xazfanrmc0cnndx8xk16nm", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgQTJZJpLfwXQc6N8rcxSAVGGf2GSGWAFYSqyKQyUVadSfiv/dog2-back.png", "left_image": "https://replicate.delivery/pbxt/MgQTKA8In6bsulSoqMd1pp6lhRFmacbXOJuK9swVdknRJSbR/dog2-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgQTJRO3p8S9ToUYyoMkWLm5edO6y7DZKqP9OZWhYG3zUFtM/dog2-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }, "logs": "Diffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s]\nDiffusion Sampling:: 3%|▎ | 1/30 [00:00<00:04, 6.97it/s]\nDiffusion Sampling:: 10%|█ | 3/30 [00:00<00:02, 9.33it/s]\nDiffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 8.36it/s]\nDiffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.85it/s]\nDiffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.55it/s]\nDiffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.35it/s]\nDiffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.23it/s]\nDiffusion Sampling:: 30%|███ | 9/30 [00:01<00:02, 7.15it/s]\nDiffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 7.09it/s]\nDiffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 7.04it/s]\nDiffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 7.01it/s]\nDiffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.99it/s]\nDiffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.98it/s]\nDiffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.97it/s]\nDiffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.96it/s]\nDiffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.95it/s]\nDiffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.94it/s]\nDiffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.94it/s]\nDiffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.94it/s]\nDiffusion Sampling:: 70%|███████ | 21/30 [00:02<00:01, 6.93it/s]\nDiffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.94it/s]\nDiffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.94it/s]\nDiffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.94it/s]\nDiffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.93it/s]\nDiffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.93it/s]\nDiffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.93it/s]\nDiffusion Sampling:: 93%|█████████▎| 28/30 [00:03<00:00, 6.92it/s]\nDiffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.92it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.92it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 7.11it/s]\nVolume Decoding: 0%| | 0/85 [00:00<?, ?it/s]\nVolume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 375.96it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 33.51it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 39.47it/s]\nShape generation took 9.23 seconds\nCreated new folder: outputs/58ebb0d3-ed6c-4d07-8a2a-f91b81f2b258", "metrics": { "predict_time": 14.084455464, "total_time": 14.100033 }, "output": "https://replicate.delivery/xezq/yUpfv4vLevlUF0wBqVNig7jTeQR9Y4EJSDtw18UPWCrTl1zoA/gray_mesh.glb", "started_at": "2025-03-18T22:58:35.492577Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-bexsttkek76wq7t72wdsekhx5mrajhhgo2nigf2xqyk5skulw36q", "get": "https://api.replicate.com/v1/predictions/0p73xazfanrmc0cnndx8xk16nm", "cancel": "https://api.replicate.com/v1/predictions/0p73xazfanrmc0cnndx8xk16nm/cancel" }, "version": "71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db" }
Generated inDiffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s] Diffusion Sampling:: 3%|▎ | 1/30 [00:00<00:04, 6.97it/s] Diffusion Sampling:: 10%|█ | 3/30 [00:00<00:02, 9.33it/s] Diffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 8.36it/s] Diffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.85it/s] Diffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.55it/s] Diffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.35it/s] Diffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.23it/s] Diffusion Sampling:: 30%|███ | 9/30 [00:01<00:02, 7.15it/s] Diffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 7.09it/s] Diffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 7.04it/s] Diffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 7.01it/s] Diffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.99it/s] Diffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.98it/s] Diffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.97it/s] Diffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.96it/s] Diffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.95it/s] Diffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.94it/s] Diffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.94it/s] Diffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.94it/s] Diffusion Sampling:: 70%|███████ | 21/30 [00:02<00:01, 6.93it/s] Diffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.94it/s] Diffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.94it/s] Diffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.94it/s] Diffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.93it/s] Diffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.93it/s] Diffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.93it/s] Diffusion Sampling:: 93%|█████████▎| 28/30 [00:03<00:00, 6.92it/s] Diffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.92it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.92it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 7.11it/s] Volume Decoding: 0%| | 0/85 [00:00<?, ?it/s] Volume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 375.96it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 33.51it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 39.47it/s] Shape generation took 9.23 seconds Created new folder: outputs/58ebb0d3-ed6c-4d07-8a2a-f91b81f2b258
Prediction
tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5dbIDb7kq24j0j9rma0cnnhgatmqgpgStatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- seed
- 1234
- steps
- 30
- file_type
- glb
- num_chunks
- 200000
- guidance_scale
- 5
- randomize_seed
- target_face_num
- 10000
- octree_resolution
- 256
- remove_background
{ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUIe87IJxK3yiK3Dxfz3qT5reV1oU7uLWiqpKasypFK66Al/blue-back.png", "left_image": "https://replicate.delivery/pbxt/MgUIdfqiSmFlavf1bYAVMMxwJnBSebGtC6BVy5uT48RATds3/blue-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUIeaCpgNVraNrydYTdaiAUYezkdAX5nFC4FYBlRbv3pV2N/blue-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", { input: { seed: 1234, steps: 30, file_type: "glb", back_image: "https://replicate.delivery/pbxt/MgUIe87IJxK3yiK3Dxfz3qT5reV1oU7uLWiqpKasypFK66Al/blue-back.png", left_image: "https://replicate.delivery/pbxt/MgUIdfqiSmFlavf1bYAVMMxwJnBSebGtC6BVy5uT48RATds3/blue-side.png", num_chunks: 200000, front_image: "https://replicate.delivery/pbxt/MgUIeaCpgNVraNrydYTdaiAUYezkdAX5nFC4FYBlRbv3pV2N/blue-front.png", guidance_scale: 5, randomize_seed: true, target_face_num: 10000, octree_resolution: 256, remove_background: true } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", input={ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUIe87IJxK3yiK3Dxfz3qT5reV1oU7uLWiqpKasypFK66Al/blue-back.png", "left_image": "https://replicate.delivery/pbxt/MgUIdfqiSmFlavf1bYAVMMxwJnBSebGtC6BVy5uT48RATds3/blue-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUIeaCpgNVraNrydYTdaiAUYezkdAX5nFC4FYBlRbv3pV2N/blue-front.png", "guidance_scale": 5, "randomize_seed": True, "target_face_num": 10000, "octree_resolution": 256, "remove_background": True } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUIe87IJxK3yiK3Dxfz3qT5reV1oU7uLWiqpKasypFK66Al/blue-back.png", "left_image": "https://replicate.delivery/pbxt/MgUIdfqiSmFlavf1bYAVMMxwJnBSebGtC6BVy5uT48RATds3/blue-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUIeaCpgNVraNrydYTdaiAUYezkdAX5nFC4FYBlRbv3pV2N/blue-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Loading...{ "completed_at": "2025-03-19T03:09:16.296513Z", "created_at": "2025-03-19T03:09:04.018000Z", "data_removed": false, "error": null, "id": "b7kq24j0j9rma0cnnhgatmqgpg", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUIe87IJxK3yiK3Dxfz3qT5reV1oU7uLWiqpKasypFK66Al/blue-back.png", "left_image": "https://replicate.delivery/pbxt/MgUIdfqiSmFlavf1bYAVMMxwJnBSebGtC6BVy5uT48RATds3/blue-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUIeaCpgNVraNrydYTdaiAUYezkdAX5nFC4FYBlRbv3pV2N/blue-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }, "logs": "Diffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s]\nDiffusion Sampling:: 3%|▎ | 1/30 [00:00<00:04, 6.81it/s]\nDiffusion Sampling:: 10%|█ | 3/30 [00:00<00:02, 9.17it/s]\nDiffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 8.21it/s]\nDiffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.69it/s]\nDiffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.39it/s]\nDiffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.20it/s]\nDiffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.08it/s]\nDiffusion Sampling:: 30%|███ | 9/30 [00:01<00:03, 6.99it/s]\nDiffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 6.93it/s]\nDiffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 6.90it/s]\nDiffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 6.87it/s]\nDiffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.85it/s]\nDiffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.84it/s]\nDiffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.83it/s]\nDiffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.81it/s]\nDiffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.80it/s]\nDiffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.80it/s]\nDiffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.80it/s]\nDiffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.80it/s]\nDiffusion Sampling:: 70%|███████ | 21/30 [00:02<00:01, 6.79it/s]\nDiffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.79it/s]\nDiffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.78it/s]\nDiffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.78it/s]\nDiffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.78it/s]\nDiffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.78it/s]\nDiffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.77it/s]\nDiffusion Sampling:: 93%|█████████▎| 28/30 [00:04<00:00, 6.77it/s]\nDiffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.77it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.77it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.96it/s]\nVolume Decoding: 0%| | 0/85 [00:00<?, ?it/s]\nVolume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 373.70it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 32.74it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 38.58it/s]\nShape generation took 9.46 seconds\nCreated new folder: outputs/f6dc986f-e2cb-4674-bf6c-cfa67a8ba8b5", "metrics": { "predict_time": 12.269541214, "total_time": 12.278513 }, "output": "https://replicate.delivery/xezq/4NMEwTPkceVYTqggblNuog00IIw7WcjEiIDVF2KYX3FuOfZUA/gray_mesh.glb", "started_at": "2025-03-19T03:09:04.026972Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-qjxyfp7qder427fdbzdvz3s7wbwycqpumr4pqrmmw3gyqe3on2oq", "get": "https://api.replicate.com/v1/predictions/b7kq24j0j9rma0cnnhgatmqgpg", "cancel": "https://api.replicate.com/v1/predictions/b7kq24j0j9rma0cnnhgatmqgpg/cancel" }, "version": "71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db" }
Generated inDiffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s] Diffusion Sampling:: 3%|▎ | 1/30 [00:00<00:04, 6.81it/s] Diffusion Sampling:: 10%|█ | 3/30 [00:00<00:02, 9.17it/s] Diffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 8.21it/s] Diffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.69it/s] Diffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.39it/s] Diffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.20it/s] Diffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.08it/s] Diffusion Sampling:: 30%|███ | 9/30 [00:01<00:03, 6.99it/s] Diffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 6.93it/s] Diffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 6.90it/s] Diffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 6.87it/s] Diffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.85it/s] Diffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.84it/s] Diffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.83it/s] Diffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.81it/s] Diffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.80it/s] Diffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.80it/s] Diffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.80it/s] Diffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.80it/s] Diffusion Sampling:: 70%|███████ | 21/30 [00:02<00:01, 6.79it/s] Diffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.79it/s] Diffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.78it/s] Diffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.78it/s] Diffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.78it/s] Diffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.78it/s] Diffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.77it/s] Diffusion Sampling:: 93%|█████████▎| 28/30 [00:04<00:00, 6.77it/s] Diffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.77it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.77it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.96it/s] Volume Decoding: 0%| | 0/85 [00:00<?, ?it/s] Volume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 373.70it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 32.74it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 38.58it/s] Shape generation took 9.46 seconds Created new folder: outputs/f6dc986f-e2cb-4674-bf6c-cfa67a8ba8b5
Prediction
tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5dbIDjmsxpyx3w1rmc0cnnhgtb5rp08StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- seed
- 1234
- steps
- 30
- file_type
- glb
- num_chunks
- 200000
- guidance_scale
- 5
- randomize_seed
- target_face_num
- 10000
- octree_resolution
- 256
- remove_background
{ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUK5Yz3JjaxcoyMWgmAe5H7BSk3SljgKDsGQGxxAvNiU1Ck/monkey-back.png", "left_image": "https://replicate.delivery/pbxt/MgUK4uwMQIVCPMn7vpYzqvg7u3WMKsUr7zW774z1PTiFAWCt/monkey-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUK5JGjs0WQbQprnyJTEWWlD2U1lzhx93wojUE9iwSgSDTH/monkey-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", { input: { seed: 1234, steps: 30, file_type: "glb", back_image: "https://replicate.delivery/pbxt/MgUK5Yz3JjaxcoyMWgmAe5H7BSk3SljgKDsGQGxxAvNiU1Ck/monkey-back.png", left_image: "https://replicate.delivery/pbxt/MgUK4uwMQIVCPMn7vpYzqvg7u3WMKsUr7zW774z1PTiFAWCt/monkey-side.png", num_chunks: 200000, front_image: "https://replicate.delivery/pbxt/MgUK5JGjs0WQbQprnyJTEWWlD2U1lzhx93wojUE9iwSgSDTH/monkey-front.png", guidance_scale: 5, randomize_seed: true, target_face_num: 10000, octree_resolution: 256, remove_background: true } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", input={ "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUK5Yz3JjaxcoyMWgmAe5H7BSk3SljgKDsGQGxxAvNiU1Ck/monkey-back.png", "left_image": "https://replicate.delivery/pbxt/MgUK4uwMQIVCPMn7vpYzqvg7u3WMKsUr7zW774z1PTiFAWCt/monkey-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUK5JGjs0WQbQprnyJTEWWlD2U1lzhx93wojUE9iwSgSDTH/monkey-front.png", "guidance_scale": 5, "randomize_seed": True, "target_face_num": 10000, "octree_resolution": 256, "remove_background": True } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run tencent/hunyuan3d-2mv using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "tencent/hunyuan3d-2mv:71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUK5Yz3JjaxcoyMWgmAe5H7BSk3SljgKDsGQGxxAvNiU1Ck/monkey-back.png", "left_image": "https://replicate.delivery/pbxt/MgUK4uwMQIVCPMn7vpYzqvg7u3WMKsUr7zW774z1PTiFAWCt/monkey-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUK5JGjs0WQbQprnyJTEWWlD2U1lzhx93wojUE9iwSgSDTH/monkey-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Loading...{ "completed_at": "2025-03-19T03:10:47.500613Z", "created_at": "2025-03-19T03:10:34.976000Z", "data_removed": false, "error": null, "id": "jmsxpyx3w1rmc0cnnhgtb5rp08", "input": { "seed": 1234, "steps": 30, "file_type": "glb", "back_image": "https://replicate.delivery/pbxt/MgUK5Yz3JjaxcoyMWgmAe5H7BSk3SljgKDsGQGxxAvNiU1Ck/monkey-back.png", "left_image": "https://replicate.delivery/pbxt/MgUK4uwMQIVCPMn7vpYzqvg7u3WMKsUr7zW774z1PTiFAWCt/monkey-side.png", "num_chunks": 200000, "front_image": "https://replicate.delivery/pbxt/MgUK5JGjs0WQbQprnyJTEWWlD2U1lzhx93wojUE9iwSgSDTH/monkey-front.png", "guidance_scale": 5, "randomize_seed": true, "target_face_num": 10000, "octree_resolution": 256, "remove_background": true }, "logs": "Diffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s]\nDiffusion Sampling:: 3%|▎ | 1/30 [00:00<00:04, 6.81it/s]\nDiffusion Sampling:: 10%|█ | 3/30 [00:00<00:02, 9.15it/s]\nDiffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 8.19it/s]\nDiffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.68it/s]\nDiffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.38it/s]\nDiffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.20it/s]\nDiffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.08it/s]\nDiffusion Sampling:: 30%|███ | 9/30 [00:01<00:03, 6.99it/s]\nDiffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 6.92it/s]\nDiffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 6.88it/s]\nDiffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 6.86it/s]\nDiffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.83it/s]\nDiffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.82it/s]\nDiffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.80it/s]\nDiffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.79it/s]\nDiffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.79it/s]\nDiffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.78it/s]\nDiffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.78it/s]\nDiffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.77it/s]\nDiffusion Sampling:: 70%|███████ | 21/30 [00:02<00:01, 6.78it/s]\nDiffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.77it/s]\nDiffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.77it/s]\nDiffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.78it/s]\nDiffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.78it/s]\nDiffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.78it/s]\nDiffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.78it/s]\nDiffusion Sampling:: 93%|█████████▎| 28/30 [00:04<00:00, 6.77it/s]\nDiffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.75it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.75it/s]\nDiffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.94it/s]\nVolume Decoding: 0%| | 0/85 [00:00<?, ?it/s]\nVolume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 377.52it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 32.69it/s]\nVolume Decoding: 100%|██████████| 85/85 [00:02<00:00, 38.52it/s]\nShape generation took 9.56 seconds\nCreated new folder: outputs/0c32fe02-2f49-4c1d-a7da-9d112292fbdb", "metrics": { "predict_time": 12.516181769, "total_time": 12.524613 }, "output": "https://replicate.delivery/xezq/djA27eQPtpTHKqCncQz93WDS3FlK5txWedALjkBD1qZ3e8zoA/gray_mesh.glb", "started_at": "2025-03-19T03:10:34.984431Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-dwa54xyhm3fawz4lbfusfutdzfjmpodbc4vzifdnopkwpjq6z3kq", "get": "https://api.replicate.com/v1/predictions/jmsxpyx3w1rmc0cnnhgtb5rp08", "cancel": "https://api.replicate.com/v1/predictions/jmsxpyx3w1rmc0cnnhgtb5rp08/cancel" }, "version": "71798fbc3c9f7b7097e3bb85496e5a797d8b8f616b550692e7c3e176a8e9e5db" }
Generated inDiffusion Sampling:: 0%| | 0/30 [00:00<?, ?it/s] Diffusion Sampling:: 3%|▎ | 1/30 [00:00<00:04, 6.81it/s] Diffusion Sampling:: 10%|█ | 3/30 [00:00<00:02, 9.15it/s] Diffusion Sampling:: 13%|█▎ | 4/30 [00:00<00:03, 8.19it/s] Diffusion Sampling:: 17%|█▋ | 5/30 [00:00<00:03, 7.68it/s] Diffusion Sampling:: 20%|██ | 6/30 [00:00<00:03, 7.38it/s] Diffusion Sampling:: 23%|██▎ | 7/30 [00:00<00:03, 7.20it/s] Diffusion Sampling:: 27%|██▋ | 8/30 [00:01<00:03, 7.08it/s] Diffusion Sampling:: 30%|███ | 9/30 [00:01<00:03, 6.99it/s] Diffusion Sampling:: 33%|███▎ | 10/30 [00:01<00:02, 6.92it/s] Diffusion Sampling:: 37%|███▋ | 11/30 [00:01<00:02, 6.88it/s] Diffusion Sampling:: 40%|████ | 12/30 [00:01<00:02, 6.86it/s] Diffusion Sampling:: 43%|████▎ | 13/30 [00:01<00:02, 6.83it/s] Diffusion Sampling:: 47%|████▋ | 14/30 [00:01<00:02, 6.82it/s] Diffusion Sampling:: 50%|█████ | 15/30 [00:02<00:02, 6.80it/s] Diffusion Sampling:: 53%|█████▎ | 16/30 [00:02<00:02, 6.79it/s] Diffusion Sampling:: 57%|█████▋ | 17/30 [00:02<00:01, 6.79it/s] Diffusion Sampling:: 60%|██████ | 18/30 [00:02<00:01, 6.78it/s] Diffusion Sampling:: 63%|██████▎ | 19/30 [00:02<00:01, 6.78it/s] Diffusion Sampling:: 67%|██████▋ | 20/30 [00:02<00:01, 6.77it/s] Diffusion Sampling:: 70%|███████ | 21/30 [00:02<00:01, 6.78it/s] Diffusion Sampling:: 73%|███████▎ | 22/30 [00:03<00:01, 6.77it/s] Diffusion Sampling:: 77%|███████▋ | 23/30 [00:03<00:01, 6.77it/s] Diffusion Sampling:: 80%|████████ | 24/30 [00:03<00:00, 6.78it/s] Diffusion Sampling:: 83%|████████▎ | 25/30 [00:03<00:00, 6.78it/s] Diffusion Sampling:: 87%|████████▋ | 26/30 [00:03<00:00, 6.78it/s] Diffusion Sampling:: 90%|█████████ | 27/30 [00:03<00:00, 6.78it/s] Diffusion Sampling:: 93%|█████████▎| 28/30 [00:04<00:00, 6.77it/s] Diffusion Sampling:: 97%|█████████▋| 29/30 [00:04<00:00, 6.75it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.75it/s] Diffusion Sampling:: 100%|██████████| 30/30 [00:04<00:00, 6.94it/s] Volume Decoding: 0%| | 0/85 [00:00<?, ?it/s] Volume Decoding: 55%|█████▌ | 47/85 [00:00<00:00, 377.52it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 32.69it/s] Volume Decoding: 100%|██████████| 85/85 [00:02<00:00, 38.52it/s] Shape generation took 9.56 seconds Created new folder: outputs/0c32fe02-2f49-4c1d-a7da-9d112292fbdb
Want to make some of these yourself?
Run this model