Readme
Xiaobai
My Cat Xiaobai
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run visoar/cat-xiaobai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"visoar/cat-xiaobai:03637e16cb82539ce8e6ec69e3cbe1cc8e864ac15836648f75f4a23b2faceb15",
{
input: {
width: 1024,
height: 1024,
prompt: " photo of TOK,photo of TOK",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.95,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.8,
negative_prompt: ",NSFW",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run visoar/cat-xiaobai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"visoar/cat-xiaobai:03637e16cb82539ce8e6ec69e3cbe1cc8e864ac15836648f75f4a23b2faceb15",
input={
"width": 1024,
"height": 1024,
"prompt": " photo of TOK,photo of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.95,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.8,
"negative_prompt": ",NSFW",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run visoar/cat-xiaobai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "visoar/cat-xiaobai:03637e16cb82539ce8e6ec69e3cbe1cc8e864ac15836648f75f4a23b2faceb15",
"input": {
"width": 1024,
"height": 1024,
"prompt": " photo of TOK,photo of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.95,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": ",NSFW",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-01-08T02:42:42.949682Z",
"created_at": "2024-01-08T02:42:21.009069Z",
"data_removed": false,
"error": null,
"id": "f3645bdbdbfe3ey3yppn3iwbmm",
"input": {
"width": 1024,
"height": 1024,
"prompt": " photo of TOK,photo of TOK",
"scheduler": "K_EULER",
"lora_scale": 0.95,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"negative_prompt": ",NSFW"
},
"logs": "Using seed: 60124\nEnsuring enough disk space...\nFree disk space: 2216797736960\nDownloading weights: https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar\n2024-01-08T02:42:24Z | INFO | [ Initiating ] dest=/src/weights-cache/1879b646fb71c7ef minimum_chunk_size=150M url=https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar\n2024-01-08T02:42:27Z | INFO | [ Complete ] dest=/src/weights-cache/1879b646fb71c7ef size=\"186 MB\" total_elapsed=3.336s url=https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar\nb''\nDownloaded weights in 3.4535627365112305 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: photo of <s0><s1>,photo of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.67it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.67it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.67it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.67it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.67it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.66it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.66it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.66it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.66it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.65it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.65it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.65it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.65it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.65it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.65it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.65it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]",
"metrics": {
"predict_time": 18.862969,
"total_time": 21.940613
},
"output": [
"https://replicate.delivery/pbxt/24tbWz8NMfxOLKfAcyS95DEbqNYuvAzL1NK6nDzT6F7iMRKSA/out-0.png"
],
"started_at": "2024-01-08T02:42:24.086713Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/f3645bdbdbfe3ey3yppn3iwbmm",
"cancel": "https://api.replicate.com/v1/predictions/f3645bdbdbfe3ey3yppn3iwbmm/cancel"
},
"version": "d77dbdd56022ea3033d0320f267b182abbefc6a090022a0f26798bfc9dec655a"
}
Using seed: 60124
Ensuring enough disk space...
Free disk space: 2216797736960
Downloading weights: https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar
2024-01-08T02:42:24Z | INFO | [ Initiating ] dest=/src/weights-cache/1879b646fb71c7ef minimum_chunk_size=150M url=https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar
2024-01-08T02:42:27Z | INFO | [ Complete ] dest=/src/weights-cache/1879b646fb71c7ef size="186 MB" total_elapsed=3.336s url=https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar
b''
Downloaded weights in 3.4535627365112305 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: photo of <s0><s1>,photo of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.67it/s]
4%|▍ | 2/50 [00:00<00:13, 3.67it/s]
6%|▌ | 3/50 [00:00<00:12, 3.67it/s]
8%|▊ | 4/50 [00:01<00:12, 3.66it/s]
10%|█ | 5/50 [00:01<00:12, 3.67it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.67it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]
30%|███ | 15/50 [00:04<00:09, 3.66it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]
40%|████ | 20/50 [00:05<00:08, 3.66it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.66it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.66it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]
50%|█████ | 25/50 [00:06<00:06, 3.65it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.65it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.65it/s]
60%|██████ | 30/50 [00:08<00:05, 3.65it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.65it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.65it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.65it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
This output was created using a different version of the model, visoar/cat-xiaobai:d77dbdd5.
This model costs approximately $0.022 to run on Replicate, or 45 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 24 seconds. The predict time for this model varies significantly based on the inputs.
Xiaobai
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 60124
Ensuring enough disk space...
Free disk space: 2216797736960
Downloading weights: https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar
2024-01-08T02:42:24Z | INFO | [ Initiating ] dest=/src/weights-cache/1879b646fb71c7ef minimum_chunk_size=150M url=https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar
2024-01-08T02:42:27Z | INFO | [ Complete ] dest=/src/weights-cache/1879b646fb71c7ef size="186 MB" total_elapsed=3.336s url=https://replicate.delivery/pbxt/nEWo2dtOGg7zCJ5TgxN23SPAfxvh0qpBFyE17NeCT9GFIRKSA/trained_model.tar
b''
Downloaded weights in 3.4535627365112305 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: photo of <s0><s1>,photo of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.67it/s]
4%|▍ | 2/50 [00:00<00:13, 3.67it/s]
6%|▌ | 3/50 [00:00<00:12, 3.67it/s]
8%|▊ | 4/50 [00:01<00:12, 3.66it/s]
10%|█ | 5/50 [00:01<00:12, 3.67it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.67it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]
30%|███ | 15/50 [00:04<00:09, 3.66it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]
40%|████ | 20/50 [00:05<00:08, 3.66it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.66it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.66it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]
50%|█████ | 25/50 [00:06<00:06, 3.65it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.65it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.65it/s]
60%|██████ | 30/50 [00:08<00:05, 3.65it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.65it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.65it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.65it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]