wavespeedai
/
wan-2.1-t2v-720p
Accelerated inference for Wan 2.1 14B text to video with high resolution, a comprehensive and open suite of video foundation models that pushes the boundaries of video generation.
Prediction
wavespeedai/wan-2.1-t2v-720pOfficial modelIDvh2hjjsdxxrm80cn8hfb7pwgtmStatusSucceededSourceWebTotal durationCreatedInput
- prompt
- Low drone footage over a bustling Tuscan town square, people laughing, dogs running around
- num_frames
- 81
- aspect_ratio
- 16:9
- sample_shift
- 5
- sample_steps
- 30
- frames_per_second
- 16
- sample_guide_scale
- 5
{ "prompt": "Low drone footage over a bustling Tuscan town square, people laughing, dogs running around", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run wavespeedai/wan-2.1-t2v-720p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const input = { prompt: "Low drone footage over a bustling Tuscan town square, people laughing, dogs running around", num_frames: 81, aspect_ratio: "16:9", sample_shift: 5, sample_steps: 30, frames_per_second: 16, sample_guide_scale: 5 }; const output = await replicate.run("wavespeedai/wan-2.1-t2v-720p", { input }); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run wavespeedai/wan-2.1-t2v-720p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "wavespeedai/wan-2.1-t2v-720p", input={ "prompt": "Low drone footage over a bustling Tuscan town square, people laughing, dogs running around", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run wavespeedai/wan-2.1-t2v-720p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "input": { "prompt": "Low drone footage over a bustling Tuscan town square, people laughing, dogs running around", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } }' \ https://api.replicate.com/v1/models/wavespeedai/wan-2.1-t2v-720p/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-02-26T22:28:46.773895Z", "created_at": "2025-02-26T22:26:17.711000Z", "data_removed": false, "error": null, "id": "vh2hjjsdxxrm80cn8hfb7pwgtm", "input": { "prompt": "Low drone footage over a bustling Tuscan town square, people laughing, dogs running around", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }, "logs": "Using seed: 780119857\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n 0%| | 0/30 [00:00<?, ?it/s]\n0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n 3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n 3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n 3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n 3%|▎ | 1/30 [00:04<02:15, 4.67s/it]\n7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n 7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n 7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n 7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n 7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n 7%|▋ | 2/30 [00:09<02:11, 4.70s/it]\n 10%|█ | 3/30 [00:14<02:09, 4.80s/it]\n 10%|█ | 3/30 [00:14<02:09, 4.81s/it]\n 10%|█ | 3/30 [00:14<02:09, 4.81s/it]\n 10%|█ | 3/30 [00:14<02:09, 4.81s/it]\n 10%|█ | 3/30 [00:14<02:09, 4.81s/it]\n 10%|█ | 3/30 [00:14<02:10, 4.82s/it]\n10%|█ | 3/30 [00:14<02:10, 4.82s/it]\n 10%|█ | 3/30 [00:14<02:10, 4.82s/it]\n13%|█▎ | 4/30 [00:19<02:03, 4.77s/it]\n13%|█▎ | 4/30 [00:19<02:03, 4.77s/it]\n13%|█▎ | 4/30 [00:19<02:03, 4.77s/it]\n13%|█▎ | 4/30 [00:19<02:04, 4.77s/it]\n13%|█▎ | 4/30 [00:19<02:03, 4.77s/it]\n 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it]\n 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it]\n 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it]\n17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it]\n20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n 20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n 20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n 20%|██ | 6/30 [00:28<01:53, 4.74s/it]\n23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it]\n27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it]\n30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n 30%|███ | 9/30 [00:42<01:39, 4.74s/it]\n33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it]\n37%|███▋ | 11/30 [00:52<01:29, 4.74s/it]\n37%|███▋ | 11/30 [00:52<01:29, 4.73s/it]\n37%|███▋ | 11/30 [00:52<01:29, 4.74s/it]\n37%|███▋ | 11/30 [00:52<01:29, 4.74s/it]\n37%|███▋ | 11/30 [00:52<01:29, 4.74s/it]\n37%|███▋ | 11/30 [00:52<01:29, 4.74s/it]\n 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it]\n 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it]\n40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n 40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n 40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n 40%|████ | 12/30 [00:56<01:25, 4.74s/it]\n43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it]\n47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it]\n50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n 50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n 50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n 50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n 50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n 50%|█████ | 15/30 [01:11<01:11, 4.74s/it]\n53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it]\n57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it]\n60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n 60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n 60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n 60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n 60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n 60%|██████ | 18/30 [01:25<00:57, 4.75s/it]\n63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it]\n67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it]\n70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n 70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n 70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n 70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n 70%|███████ | 21/30 [01:39<00:42, 4.75s/it]\n73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it]\n77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it]\n80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n 80%|████████ | 24/30 [01:53<00:28, 4.75s/it]\n83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it]\n87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it]\n90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it]\n93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it]\n97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.74s/it]\n100%|██████████| 30/30 [02:22<00:00, 4.75s/it]\nTime elapsed: 147.41s\nSaving generated video to output.mp4\n/root/.pyenv/versions/3.12.6/lib/python3.12/site-packages/cog/server/scope.py:22: ExperimentalFeatureWarning: current_scope is an experimental internal function. It may change or be removed without warning.\nwarnings.warn(", "metrics": { "predict_time": 149.031784017, "total_time": 149.062895 }, "output": "https://replicate.delivery/xezq/VxUDLA2JpHJHDlKX5b0ybt9Hm1MfICg3NBhfjwsVfbw88omoA/output.mp4", "started_at": "2025-02-26T22:26:17.742111Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-wjs4rfyv7vyhulv5mct3ipeu2feu2n3out4c7uexjqashaydtcga", "get": "https://api.replicate.com/v1/predictions/vh2hjjsdxxrm80cn8hfb7pwgtm", "cancel": "https://api.replicate.com/v1/predictions/vh2hjjsdxxrm80cn8hfb7pwgtm/cancel" }, "version": "hidden" }
Generated inUsing seed: 780119857 /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 3%|▎ | 1/30 [00:04<02:15, 4.67s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 7%|▋ | 2/30 [00:09<02:11, 4.70s/it] 10%|█ | 3/30 [00:14<02:09, 4.80s/it] 10%|█ | 3/30 [00:14<02:09, 4.81s/it] 10%|█ | 3/30 [00:14<02:09, 4.81s/it] 10%|█ | 3/30 [00:14<02:09, 4.81s/it] 10%|█ | 3/30 [00:14<02:09, 4.81s/it] 10%|█ | 3/30 [00:14<02:10, 4.82s/it] 10%|█ | 3/30 [00:14<02:10, 4.82s/it] 10%|█ | 3/30 [00:14<02:10, 4.82s/it] 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it] 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it] 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it] 13%|█▎ | 4/30 [00:19<02:04, 4.77s/it] 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it] 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it] 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it] 13%|█▎ | 4/30 [00:19<02:03, 4.77s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 17%|█▋ | 5/30 [00:23<01:58, 4.75s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 20%|██ | 6/30 [00:28<01:53, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 23%|██▎ | 7/30 [00:33<01:48, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 27%|██▋ | 8/30 [00:37<01:44, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 30%|███ | 9/30 [00:42<01:39, 4.74s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 33%|███▎ | 10/30 [00:47<01:34, 4.73s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.73s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it] 37%|███▋ | 11/30 [00:52<01:29, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 40%|████ | 12/30 [00:56<01:25, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 43%|████▎ | 13/30 [01:01<01:20, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 47%|████▋ | 14/30 [01:06<01:15, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 50%|█████ | 15/30 [01:11<01:11, 4.74s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 53%|█████▎ | 16/30 [01:15<01:06, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 57%|█████▋ | 17/30 [01:20<01:01, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 60%|██████ | 18/30 [01:25<00:57, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 63%|██████▎ | 19/30 [01:30<00:52, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 67%|██████▋ | 20/30 [01:34<00:47, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 70%|███████ | 21/30 [01:39<00:42, 4.75s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 73%|███████▎ | 22/30 [01:44<00:38, 4.76s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 77%|███████▋ | 23/30 [01:49<00:33, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 80%|████████ | 24/30 [01:53<00:28, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 83%|████████▎ | 25/30 [01:58<00:23, 4.75s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 87%|████████▋ | 26/30 [02:03<00:18, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 90%|█████████ | 27/30 [02:08<00:14, 4.74s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 93%|█████████▎| 28/30 [02:12<00:09, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 97%|█████████▋| 29/30 [02:17<00:04, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] 100%|██████████| 30/30 [02:22<00:00, 4.74s/it] 100%|██████████| 30/30 [02:22<00:00, 4.75s/it] Time elapsed: 147.41s Saving generated video to output.mp4 /root/.pyenv/versions/3.12.6/lib/python3.12/site-packages/cog/server/scope.py:22: ExperimentalFeatureWarning: current_scope is an experimental internal function. It may change or be removed without warning. warnings.warn(
Prediction
wavespeedai/wan-2.1-t2v-720pOfficial modelID4ejyf2c7znrme0cnbesvw9c8v0StatusSucceededSourceWebTotal durationCreatedInput
- prompt
- A smiling woman walking in London at night
- fast_mode
- Balanced
- num_frames
- 81
- aspect_ratio
- 16:9
- sample_shift
- 5
- sample_steps
- 30
- frames_per_second
- 16
- sample_guide_scale
- 5
{ "prompt": "A smiling woman walking in London at night", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run wavespeedai/wan-2.1-t2v-720p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const input = { prompt: "A smiling woman walking in London at night", fast_mode: "Balanced", num_frames: 81, aspect_ratio: "16:9", sample_shift: 5, sample_steps: 30, frames_per_second: 16, sample_guide_scale: 5 }; const output = await replicate.run("wavespeedai/wan-2.1-t2v-720p", { input }); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run wavespeedai/wan-2.1-t2v-720p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "wavespeedai/wan-2.1-t2v-720p", input={ "prompt": "A smiling woman walking in London at night", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run wavespeedai/wan-2.1-t2v-720p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "input": { "prompt": "A smiling woman walking in London at night", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } }' \ https://api.replicate.com/v1/models/wavespeedai/wan-2.1-t2v-720p/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-03-03T11:12:32Z", "created_at": "2025-03-03T11:10:47.293000Z", "data_removed": false, "error": "", "id": "4ejyf2c7znrme0cnbesvw9c8v0", "input": { "prompt": "A smiling woman walking in London at night", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }, "logs": "Moderating content...\r\nModeration complete in 0.19sec\r\nUsing seed: 1904148191\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n 0%| | 0/30 [00:00<?, ?it/s]\r\n 0%| | 0/30 [00:00<?, ?it/s]\r\n 0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n 0%| | 0/30 [00:00<?, ?it/s]\r\n 0%| | 0/30 [00:00<?, ?it/s]\r\n3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n 3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n 3%|▎ | 1/30 [00:04<02:14, 4.64s/it]\r\n7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n 7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n 7%|▋ | 2/30 [00:09<02:10, 4.65s/it]\r\n10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n 10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n 10%|█ | 3/30 [00:13<02:05, 4.66s/it]\r\n13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it]\r\n17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it]\r\n20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n 20%|██ | 6/30 [00:23<01:15, 3.13s/it]\r\n23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it]\r\n27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it]\r\n30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n 30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n 30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n 30%|███ | 9/30 [00:32<01:07, 3.20s/it]\r\n33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it]\r\n37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it]\r\n40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n 40%|████ | 12/30 [00:37<00:38, 2.13s/it]\r\n43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it]\r\n47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it]\r\n50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n 50%|█████ | 15/30 [00:47<00:42, 2.86s/it]\r\n53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it]\r\n57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it]\r\n60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n 60%|██████ | 18/30 [00:52<00:24, 2.03s/it]\r\n63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it]\r\n67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it]\r\n70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n 70%|███████ | 21/30 [01:01<00:25, 2.83s/it]\r\n73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it]\r\n77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it]\r\n80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n 80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n 80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n 80%|████████ | 24/30 [01:11<00:20, 3.39s/it]\r\n83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it]\r\n87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it]\r\n90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it]\r\n93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it]\r\n97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 4.55s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\n100%|██████████| 30/30 [01:39<00:00, 3.33s/it]\r\nTime elapsed: 103.80s\r\nSaving generated video to output.mp4", "metrics": { "predict_time": 105.444627322, "total_time": 104.707 }, "output": "https://replicate.delivery/xezq/0nyHDVe6ZkzsMKgc9ftDGHmpf0SfmrBg3jgkLg79IZCAKQTRB/output.mp4", "started_at": "2025-03-03T11:10:47Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-e3gruj4rxq3n5atcruss4bj2oeeqiuix4oyjnzsdx3qzs7wi5mva", "get": "https://api.replicate.com/v1/predictions/4ejyf2c7znrme0cnbesvw9c8v0", "cancel": "https://api.replicate.com/v1/predictions/4ejyf2c7znrme0cnbesvw9c8v0/cancel" }, "version": "hidden" }
Generated inModerating content... Moderation complete in 0.19sec Using seed: 1904148191 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 3%|▎ | 1/30 [00:04<02:14, 4.64s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 7%|▋ | 2/30 [00:09<02:10, 4.65s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 10%|█ | 3/30 [00:13<02:05, 4.66s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 13%|█▎ | 4/30 [00:18<02:01, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 17%|█▋ | 5/30 [00:23<01:56, 4.67s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 20%|██ | 6/30 [00:23<01:15, 3.13s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 23%|██▎ | 7/30 [00:28<01:23, 3.64s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 27%|██▋ | 8/30 [00:28<00:55, 2.52s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 30%|███ | 9/30 [00:32<01:07, 3.20s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 33%|███▎ | 10/30 [00:33<00:45, 2.25s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 37%|███▋ | 11/30 [00:37<00:56, 3.00s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 40%|████ | 12/30 [00:37<00:38, 2.13s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 43%|████▎ | 13/30 [00:42<00:49, 2.90s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 47%|████▋ | 14/30 [00:42<00:33, 2.07s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 50%|█████ | 15/30 [00:47<00:42, 2.86s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 53%|█████▎ | 16/30 [00:47<00:28, 2.04s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 57%|█████▋ | 17/30 [00:52<00:36, 2.84s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 60%|██████ | 18/30 [00:52<00:24, 2.03s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 63%|██████▎ | 19/30 [00:57<00:31, 2.84s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 67%|██████▋ | 20/30 [00:57<00:20, 2.02s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 70%|███████ | 21/30 [01:01<00:25, 2.83s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 73%|███████▎ | 22/30 [01:02<00:16, 2.02s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 77%|███████▋ | 23/30 [01:06<00:19, 2.83s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 80%|████████ | 24/30 [01:11<00:20, 3.39s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 83%|████████▎ | 25/30 [01:16<00:18, 3.78s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 87%|████████▋ | 26/30 [01:20<00:16, 4.06s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 90%|█████████ | 27/30 [01:25<00:12, 4.25s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 93%|█████████▎| 28/30 [01:30<00:08, 4.39s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 97%|█████████▋| 29/30 [01:35<00:04, 4.49s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] 100%|██████████| 30/30 [01:39<00:00, 4.55s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] 100%|██████████| 30/30 [01:39<00:00, 3.33s/it] Time elapsed: 103.80s Saving generated video to output.mp4
Want to make some of these yourself?
Run this model