Readme
High quality image blending using Kandinsky 2.2 blending pipeline brought to you by FullJourney.AI
High quality image blending using Kandinsky 2.2 blending pipeline brought to you by your best friends at FullJourney.AI :)
Hotshot XL using SDXL for generating one second clips of high quality! Running on a40 Made by the greats at hotshot.co and brought to you by your friends at FullJourney! Thanks to LucaTaco for the MVP!
Add a watermark to your videos using the power of Replicate brought to you from your friends at FullJourney.AI
Terminus XL Gamma is a new state-of-the-art latent diffusion model that uses zero-terminal SNR noise schedule and velocity prediction objective at training and inference time.
Terminus XL Otaku is a latent diffusion model that uses zero-terminal SNR noise schedule and velocity prediction objective at training and inference time.
Animagine XL 2.0 is an advanced latent text-to-image diffusion model designed to create high-resolution, detailed anime images.
The best Pony-SDXL models! Current one is based on Pony Realism.
blue_pencil-XL meets ANIMAGINE XL 3.0 / ANIMAGINE XL 3.1, The top ranked model on Civitai
epiCRealism v7-Final Destination. Top Realism Model on Civitai
MusicGen running on an a40 with 60 seconds max duration
Kolors is a SOTA base image model for high quality image generation
Take audio from one video and add it to a second video. Good for adding back audio to liveportrait.
Change the fps of a video without changing its length or speed
High quality image blending using Kandinsky 2.2 blending pipeline brought to you by your best friends at FullJourney.AI :)
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run charlesmccarthy/blend-images using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"charlesmccarthy/blend-images:1ed8aaaa04fa84f0c1191679e765d209b94866f6503038416dcbcb340fede892",
{
input: {
image1: "https://replicate.delivery/pbxt/JYUwgFNQbajoEQxvkJIPjDfIpE5Pj51iSfeU8CaYe1896Hyk/generatedimg_4_43531b30-b813-4226-9d5a-a80b5a29f613_1695126618.png",
image2: "https://replicate.delivery/pbxt/JYUwgCRwYFmMbVAK0RmU5ftY6zg86x6zjTrLG9Bq3abzB6Mw/generatedimg_2_466bb97d-67eb-406a-8a20-2aeb975ea45c_1695134551.png",
prompt: "A deer shaped clock"
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run charlesmccarthy/blend-images using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"charlesmccarthy/blend-images:1ed8aaaa04fa84f0c1191679e765d209b94866f6503038416dcbcb340fede892",
input={
"image1": "https://replicate.delivery/pbxt/JYUwgFNQbajoEQxvkJIPjDfIpE5Pj51iSfeU8CaYe1896Hyk/generatedimg_4_43531b30-b813-4226-9d5a-a80b5a29f613_1695126618.png",
"image2": "https://replicate.delivery/pbxt/JYUwgCRwYFmMbVAK0RmU5ftY6zg86x6zjTrLG9Bq3abzB6Mw/generatedimg_2_466bb97d-67eb-406a-8a20-2aeb975ea45c_1695134551.png",
"prompt": "A deer shaped clock"
}
)
# To access the file URL:
print(output.url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run charlesmccarthy/blend-images using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "charlesmccarthy/blend-images:1ed8aaaa04fa84f0c1191679e765d209b94866f6503038416dcbcb340fede892",
"input": {
"image1": "https://replicate.delivery/pbxt/JYUwgFNQbajoEQxvkJIPjDfIpE5Pj51iSfeU8CaYe1896Hyk/generatedimg_4_43531b30-b813-4226-9d5a-a80b5a29f613_1695126618.png",
"image2": "https://replicate.delivery/pbxt/JYUwgCRwYFmMbVAK0RmU5ftY6zg86x6zjTrLG9Bq3abzB6Mw/generatedimg_2_466bb97d-67eb-406a-8a20-2aeb975ea45c_1695134551.png",
"prompt": "A deer shaped clock"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-09-19T14:47:18.855162Z",
"created_at": "2023-09-19T14:44:58.838855Z",
"data_removed": false,
"error": null,
"id": "y6fgly3be4x5erx5sxj2ekhwxa",
"input": {
"image1": "https://replicate.delivery/pbxt/JYUwgFNQbajoEQxvkJIPjDfIpE5Pj51iSfeU8CaYe1896Hyk/generatedimg_4_43531b30-b813-4226-9d5a-a80b5a29f613_1695126618.png",
"image2": "https://replicate.delivery/pbxt/JYUwgCRwYFmMbVAK0RmU5ftY6zg86x6zjTrLG9Bq3abzB6Mw/generatedimg_2_466bb97d-67eb-406a-8a20-2aeb975ea45c_1695134551.png",
"prompt": "A deer shaped clock"
},
"logs": "0%| | 0/25 [00:00<?, ?it/s]\n 32%|███▏ | 8/25 [00:00<00:00, 74.16it/s]\n 64%|██████▍ | 16/25 [00:00<00:00, 76.68it/s]\n 96%|█████████▌| 24/25 [00:00<00:00, 77.78it/s]\n100%|██████████| 25/25 [00:00<00:00, 77.27it/s]\n 0%| | 0/25 [00:00<?, ?it/s]\n 32%|███▏ | 8/25 [00:00<00:00, 78.77it/s]\n 64%|██████▍ | 16/25 [00:00<00:00, 76.97it/s]\n 96%|█████████▌| 24/25 [00:00<00:00, 76.73it/s]\n100%|██████████| 25/25 [00:00<00:00, 77.01it/s]\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:12, 7.84it/s]\n 2%|▏ | 2/100 [00:00<00:12, 7.79it/s]\n 3%|▎ | 3/100 [00:00<00:12, 7.77it/s]\n 4%|▍ | 4/100 [00:00<00:12, 7.76it/s]\n 5%|▌ | 5/100 [00:00<00:12, 7.77it/s]\n 6%|▌ | 6/100 [00:00<00:12, 7.78it/s]\n 7%|▋ | 7/100 [00:00<00:11, 7.77it/s]\n 8%|▊ | 8/100 [00:01<00:11, 7.77it/s]\n 9%|▉ | 9/100 [00:01<00:11, 7.76it/s]\n 10%|█ | 10/100 [00:01<00:11, 7.76it/s]\n 11%|█ | 11/100 [00:01<00:11, 7.76it/s]\n 12%|█▏ | 12/100 [00:01<00:11, 7.76it/s]\n 13%|█▎ | 13/100 [00:01<00:11, 7.75it/s]\n 14%|█▍ | 14/100 [00:01<00:11, 7.75it/s]\n 15%|█▌ | 15/100 [00:01<00:10, 7.75it/s]\n 16%|█▌ | 16/100 [00:02<00:10, 7.76it/s]\n 17%|█▋ | 17/100 [00:02<00:10, 7.76it/s]\n 18%|█▊ | 18/100 [00:02<00:10, 7.75it/s]\n 19%|█▉ | 19/100 [00:02<00:10, 7.75it/s]\n 20%|██ | 20/100 [00:02<00:10, 7.75it/s]\n 21%|██ | 21/100 [00:02<00:10, 7.76it/s]\n 22%|██▏ | 22/100 [00:02<00:10, 7.75it/s]\n 23%|██▎ | 23/100 [00:02<00:09, 7.75it/s]\n 24%|██▍ | 24/100 [00:03<00:09, 7.76it/s]\n 25%|██▌ | 25/100 [00:03<00:09, 7.76it/s]\n 26%|██▌ | 26/100 [00:03<00:09, 7.76it/s]\n 27%|██▋ | 27/100 [00:03<00:09, 7.76it/s]\n 28%|██▊ | 28/100 [00:03<00:09, 7.75it/s]\n 29%|██▉ | 29/100 [00:03<00:09, 7.75it/s]\n 30%|███ | 30/100 [00:03<00:09, 7.75it/s]\n 31%|███ | 31/100 [00:03<00:08, 7.74it/s]\n 32%|███▏ | 32/100 [00:04<00:08, 7.74it/s]\n 33%|███▎ | 33/100 [00:04<00:08, 7.74it/s]\n 34%|███▍ | 34/100 [00:04<00:08, 7.75it/s]\n 35%|███▌ | 35/100 [00:04<00:08, 7.75it/s]\n 36%|███▌ | 36/100 [00:04<00:08, 7.75it/s]\n 37%|███▋ | 37/100 [00:04<00:08, 7.75it/s]\n 38%|███▊ | 38/100 [00:04<00:08, 7.75it/s]\n 39%|███▉ | 39/100 [00:05<00:07, 7.75it/s]\n 40%|████ | 40/100 [00:05<00:07, 7.75it/s]\n 41%|████ | 41/100 [00:05<00:07, 7.75it/s]\n 42%|████▏ | 42/100 [00:05<00:07, 7.74it/s]\n 43%|████▎ | 43/100 [00:05<00:07, 7.73it/s]\n 44%|████▍ | 44/100 [00:05<00:07, 7.73it/s]\n 45%|████▌ | 45/100 [00:05<00:07, 7.73it/s]\n 46%|████▌ | 46/100 [00:05<00:06, 7.73it/s]\n 47%|████▋ | 47/100 [00:06<00:06, 7.74it/s]\n 48%|████▊ | 48/100 [00:06<00:06, 7.74it/s]\n 49%|████▉ | 49/100 [00:06<00:06, 7.74it/s]\n 50%|█████ | 50/100 [00:06<00:06, 7.75it/s]\n 51%|█████ | 51/100 [00:06<00:06, 7.75it/s]\n 52%|█████▏ | 52/100 [00:06<00:06, 7.75it/s]\n 53%|█████▎ | 53/100 [00:06<00:06, 7.74it/s]\n 54%|█████▍ | 54/100 [00:06<00:05, 7.74it/s]\n 55%|█████▌ | 55/100 [00:07<00:05, 7.74it/s]\n 56%|█████▌ | 56/100 [00:07<00:05, 7.74it/s]\n 57%|█████▋ | 57/100 [00:07<00:05, 7.74it/s]\n 58%|█████▊ | 58/100 [00:07<00:05, 7.74it/s]\n 59%|█████▉ | 59/100 [00:07<00:05, 7.74it/s]\n 60%|██████ | 60/100 [00:07<00:05, 7.74it/s]\n 61%|██████ | 61/100 [00:07<00:05, 7.74it/s]\n 62%|██████▏ | 62/100 [00:08<00:04, 7.74it/s]\n 63%|██████▎ | 63/100 [00:08<00:04, 7.74it/s]\n 64%|██████▍ | 64/100 [00:08<00:04, 7.74it/s]\n 65%|██████▌ | 65/100 [00:08<00:04, 7.74it/s]\n 66%|██████▌ | 66/100 [00:08<00:04, 7.74it/s]\n 67%|██████▋ | 67/100 [00:08<00:04, 7.74it/s]\n 68%|██████▊ | 68/100 [00:08<00:04, 7.73it/s]\n 69%|██████▉ | 69/100 [00:08<00:04, 7.72it/s]\n 70%|███████ | 70/100 [00:09<00:03, 7.72it/s]\n 71%|███████ | 71/100 [00:09<00:03, 7.73it/s]\n 72%|███████▏ | 72/100 [00:09<00:03, 7.72it/s]\n 73%|███████▎ | 73/100 [00:09<00:03, 7.72it/s]\n 74%|███████▍ | 74/100 [00:09<00:03, 7.72it/s]\n 75%|███████▌ | 75/100 [00:09<00:03, 7.72it/s]\n 76%|███████▌ | 76/100 [00:09<00:03, 7.73it/s]\n 77%|███████▋ | 77/100 [00:09<00:02, 7.74it/s]\n 78%|███████▊ | 78/100 [00:10<00:02, 7.73it/s]\n 79%|███████▉ | 79/100 [00:10<00:02, 7.74it/s]\n 80%|████████ | 80/100 [00:10<00:02, 7.74it/s]\n 81%|████████ | 81/100 [00:10<00:02, 7.73it/s]\n 82%|████████▏ | 82/100 [00:10<00:02, 7.73it/s]\n 83%|████████▎ | 83/100 [00:10<00:02, 7.73it/s]\n 84%|████████▍ | 84/100 [00:10<00:02, 7.73it/s]\n 85%|████████▌ | 85/100 [00:10<00:01, 7.73it/s]\n 86%|████████▌ | 86/100 [00:11<00:01, 7.72it/s]\n 87%|████████▋ | 87/100 [00:11<00:01, 7.71it/s]\n 88%|████████▊ | 88/100 [00:11<00:01, 7.72it/s]\n 89%|████████▉ | 89/100 [00:11<00:01, 7.72it/s]\n 90%|█████████ | 90/100 [00:11<00:01, 7.72it/s]\n 91%|█████████ | 91/100 [00:11<00:01, 7.73it/s]\n 92%|█████████▏| 92/100 [00:11<00:01, 7.73it/s]\n 93%|█████████▎| 93/100 [00:12<00:00, 7.73it/s]\n 94%|█████████▍| 94/100 [00:12<00:00, 7.74it/s]\n 95%|█████████▌| 95/100 [00:12<00:00, 7.74it/s]\n 96%|█████████▌| 96/100 [00:12<00:00, 7.73it/s]\n 97%|█████████▋| 97/100 [00:12<00:00, 7.74it/s]\n 98%|█████████▊| 98/100 [00:12<00:00, 7.74it/s]\n 99%|█████████▉| 99/100 [00:12<00:00, 7.73it/s]\n100%|██████████| 100/100 [00:12<00:00, 7.73it/s]\n100%|██████████| 100/100 [00:12<00:00, 7.74it/s]",
"metrics": {
"predict_time": 17.637254,
"total_time": 140.016307
},
"output": "https://pbxt.replicate.delivery/jWpveeiis2oXLE4cmnTu5l2SpfKGdbqKBbLAHgBDFykqzsLjA/output.png",
"started_at": "2023-09-19T14:47:01.217908Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/y6fgly3be4x5erx5sxj2ekhwxa",
"cancel": "https://api.replicate.com/v1/predictions/y6fgly3be4x5erx5sxj2ekhwxa/cancel"
},
"version": "1ed8aaaa04fa84f0c1191679e765d209b94866f6503038416dcbcb340fede892"
}
0%| | 0/25 [00:00<?, ?it/s]
32%|███▏ | 8/25 [00:00<00:00, 74.16it/s]
64%|██████▍ | 16/25 [00:00<00:00, 76.68it/s]
96%|█████████▌| 24/25 [00:00<00:00, 77.78it/s]
100%|██████████| 25/25 [00:00<00:00, 77.27it/s]
0%| | 0/25 [00:00<?, ?it/s]
32%|███▏ | 8/25 [00:00<00:00, 78.77it/s]
64%|██████▍ | 16/25 [00:00<00:00, 76.97it/s]
96%|█████████▌| 24/25 [00:00<00:00, 76.73it/s]
100%|██████████| 25/25 [00:00<00:00, 77.01it/s]
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:00<00:12, 7.84it/s]
2%|▏ | 2/100 [00:00<00:12, 7.79it/s]
3%|▎ | 3/100 [00:00<00:12, 7.77it/s]
4%|▍ | 4/100 [00:00<00:12, 7.76it/s]
5%|▌ | 5/100 [00:00<00:12, 7.77it/s]
6%|▌ | 6/100 [00:00<00:12, 7.78it/s]
7%|▋ | 7/100 [00:00<00:11, 7.77it/s]
8%|▊ | 8/100 [00:01<00:11, 7.77it/s]
9%|▉ | 9/100 [00:01<00:11, 7.76it/s]
10%|█ | 10/100 [00:01<00:11, 7.76it/s]
11%|█ | 11/100 [00:01<00:11, 7.76it/s]
12%|█▏ | 12/100 [00:01<00:11, 7.76it/s]
13%|█▎ | 13/100 [00:01<00:11, 7.75it/s]
14%|█▍ | 14/100 [00:01<00:11, 7.75it/s]
15%|█▌ | 15/100 [00:01<00:10, 7.75it/s]
16%|█▌ | 16/100 [00:02<00:10, 7.76it/s]
17%|█▋ | 17/100 [00:02<00:10, 7.76it/s]
18%|█▊ | 18/100 [00:02<00:10, 7.75it/s]
19%|█▉ | 19/100 [00:02<00:10, 7.75it/s]
20%|██ | 20/100 [00:02<00:10, 7.75it/s]
21%|██ | 21/100 [00:02<00:10, 7.76it/s]
22%|██▏ | 22/100 [00:02<00:10, 7.75it/s]
23%|██▎ | 23/100 [00:02<00:09, 7.75it/s]
24%|██▍ | 24/100 [00:03<00:09, 7.76it/s]
25%|██▌ | 25/100 [00:03<00:09, 7.76it/s]
26%|██▌ | 26/100 [00:03<00:09, 7.76it/s]
27%|██▋ | 27/100 [00:03<00:09, 7.76it/s]
28%|██▊ | 28/100 [00:03<00:09, 7.75it/s]
29%|██▉ | 29/100 [00:03<00:09, 7.75it/s]
30%|███ | 30/100 [00:03<00:09, 7.75it/s]
31%|███ | 31/100 [00:03<00:08, 7.74it/s]
32%|███▏ | 32/100 [00:04<00:08, 7.74it/s]
33%|███▎ | 33/100 [00:04<00:08, 7.74it/s]
34%|███▍ | 34/100 [00:04<00:08, 7.75it/s]
35%|███▌ | 35/100 [00:04<00:08, 7.75it/s]
36%|███▌ | 36/100 [00:04<00:08, 7.75it/s]
37%|███▋ | 37/100 [00:04<00:08, 7.75it/s]
38%|███▊ | 38/100 [00:04<00:08, 7.75it/s]
39%|███▉ | 39/100 [00:05<00:07, 7.75it/s]
40%|████ | 40/100 [00:05<00:07, 7.75it/s]
41%|████ | 41/100 [00:05<00:07, 7.75it/s]
42%|████▏ | 42/100 [00:05<00:07, 7.74it/s]
43%|████▎ | 43/100 [00:05<00:07, 7.73it/s]
44%|████▍ | 44/100 [00:05<00:07, 7.73it/s]
45%|████▌ | 45/100 [00:05<00:07, 7.73it/s]
46%|████▌ | 46/100 [00:05<00:06, 7.73it/s]
47%|████▋ | 47/100 [00:06<00:06, 7.74it/s]
48%|████▊ | 48/100 [00:06<00:06, 7.74it/s]
49%|████▉ | 49/100 [00:06<00:06, 7.74it/s]
50%|█████ | 50/100 [00:06<00:06, 7.75it/s]
51%|█████ | 51/100 [00:06<00:06, 7.75it/s]
52%|█████▏ | 52/100 [00:06<00:06, 7.75it/s]
53%|█████▎ | 53/100 [00:06<00:06, 7.74it/s]
54%|█████▍ | 54/100 [00:06<00:05, 7.74it/s]
55%|█████▌ | 55/100 [00:07<00:05, 7.74it/s]
56%|█████▌ | 56/100 [00:07<00:05, 7.74it/s]
57%|█████▋ | 57/100 [00:07<00:05, 7.74it/s]
58%|█████▊ | 58/100 [00:07<00:05, 7.74it/s]
59%|█████▉ | 59/100 [00:07<00:05, 7.74it/s]
60%|██████ | 60/100 [00:07<00:05, 7.74it/s]
61%|██████ | 61/100 [00:07<00:05, 7.74it/s]
62%|██████▏ | 62/100 [00:08<00:04, 7.74it/s]
63%|██████▎ | 63/100 [00:08<00:04, 7.74it/s]
64%|██████▍ | 64/100 [00:08<00:04, 7.74it/s]
65%|██████▌ | 65/100 [00:08<00:04, 7.74it/s]
66%|██████▌ | 66/100 [00:08<00:04, 7.74it/s]
67%|██████▋ | 67/100 [00:08<00:04, 7.74it/s]
68%|██████▊ | 68/100 [00:08<00:04, 7.73it/s]
69%|██████▉ | 69/100 [00:08<00:04, 7.72it/s]
70%|███████ | 70/100 [00:09<00:03, 7.72it/s]
71%|███████ | 71/100 [00:09<00:03, 7.73it/s]
72%|███████▏ | 72/100 [00:09<00:03, 7.72it/s]
73%|███████▎ | 73/100 [00:09<00:03, 7.72it/s]
74%|███████▍ | 74/100 [00:09<00:03, 7.72it/s]
75%|███████▌ | 75/100 [00:09<00:03, 7.72it/s]
76%|███████▌ | 76/100 [00:09<00:03, 7.73it/s]
77%|███████▋ | 77/100 [00:09<00:02, 7.74it/s]
78%|███████▊ | 78/100 [00:10<00:02, 7.73it/s]
79%|███████▉ | 79/100 [00:10<00:02, 7.74it/s]
80%|████████ | 80/100 [00:10<00:02, 7.74it/s]
81%|████████ | 81/100 [00:10<00:02, 7.73it/s]
82%|████████▏ | 82/100 [00:10<00:02, 7.73it/s]
83%|████████▎ | 83/100 [00:10<00:02, 7.73it/s]
84%|████████▍ | 84/100 [00:10<00:02, 7.73it/s]
85%|████████▌ | 85/100 [00:10<00:01, 7.73it/s]
86%|████████▌ | 86/100 [00:11<00:01, 7.72it/s]
87%|████████▋ | 87/100 [00:11<00:01, 7.71it/s]
88%|████████▊ | 88/100 [00:11<00:01, 7.72it/s]
89%|████████▉ | 89/100 [00:11<00:01, 7.72it/s]
90%|█████████ | 90/100 [00:11<00:01, 7.72it/s]
91%|█████████ | 91/100 [00:11<00:01, 7.73it/s]
92%|█████████▏| 92/100 [00:11<00:01, 7.73it/s]
93%|█████████▎| 93/100 [00:12<00:00, 7.73it/s]
94%|█████████▍| 94/100 [00:12<00:00, 7.74it/s]
95%|█████████▌| 95/100 [00:12<00:00, 7.74it/s]
96%|█████████▌| 96/100 [00:12<00:00, 7.73it/s]
97%|█████████▋| 97/100 [00:12<00:00, 7.74it/s]
98%|█████████▊| 98/100 [00:12<00:00, 7.74it/s]
99%|█████████▉| 99/100 [00:12<00:00, 7.73it/s]
100%|██████████| 100/100 [00:12<00:00, 7.73it/s]
100%|██████████| 100/100 [00:12<00:00, 7.74it/s]
This model costs approximately $0.0085 to run on Replicate, or 117 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 9 seconds. The predict time for this model varies significantly based on the inputs.
High quality image blending using Kandinsky 2.2 blending pipeline brought to you by FullJourney.AI
This model is not yet booted but ready for API calls. Your first API call will boot the model and may take longer, but after that subsequent responses will be fast.
This model costs approximately $0.0085 to run on Replicate, but this varies depending on your inputs.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
0%| | 0/25 [00:00<?, ?it/s]
32%|███▏ | 8/25 [00:00<00:00, 74.16it/s]
64%|██████▍ | 16/25 [00:00<00:00, 76.68it/s]
96%|█████████▌| 24/25 [00:00<00:00, 77.78it/s]
100%|██████████| 25/25 [00:00<00:00, 77.27it/s]
0%| | 0/25 [00:00<?, ?it/s]
32%|███▏ | 8/25 [00:00<00:00, 78.77it/s]
64%|██████▍ | 16/25 [00:00<00:00, 76.97it/s]
96%|█████████▌| 24/25 [00:00<00:00, 76.73it/s]
100%|██████████| 25/25 [00:00<00:00, 77.01it/s]
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:00<00:12, 7.84it/s]
2%|▏ | 2/100 [00:00<00:12, 7.79it/s]
3%|▎ | 3/100 [00:00<00:12, 7.77it/s]
4%|▍ | 4/100 [00:00<00:12, 7.76it/s]
5%|▌ | 5/100 [00:00<00:12, 7.77it/s]
6%|▌ | 6/100 [00:00<00:12, 7.78it/s]
7%|▋ | 7/100 [00:00<00:11, 7.77it/s]
8%|▊ | 8/100 [00:01<00:11, 7.77it/s]
9%|▉ | 9/100 [00:01<00:11, 7.76it/s]
10%|█ | 10/100 [00:01<00:11, 7.76it/s]
11%|█ | 11/100 [00:01<00:11, 7.76it/s]
12%|█▏ | 12/100 [00:01<00:11, 7.76it/s]
13%|█▎ | 13/100 [00:01<00:11, 7.75it/s]
14%|█▍ | 14/100 [00:01<00:11, 7.75it/s]
15%|█▌ | 15/100 [00:01<00:10, 7.75it/s]
16%|█▌ | 16/100 [00:02<00:10, 7.76it/s]
17%|█▋ | 17/100 [00:02<00:10, 7.76it/s]
18%|█▊ | 18/100 [00:02<00:10, 7.75it/s]
19%|█▉ | 19/100 [00:02<00:10, 7.75it/s]
20%|██ | 20/100 [00:02<00:10, 7.75it/s]
21%|██ | 21/100 [00:02<00:10, 7.76it/s]
22%|██▏ | 22/100 [00:02<00:10, 7.75it/s]
23%|██▎ | 23/100 [00:02<00:09, 7.75it/s]
24%|██▍ | 24/100 [00:03<00:09, 7.76it/s]
25%|██▌ | 25/100 [00:03<00:09, 7.76it/s]
26%|██▌ | 26/100 [00:03<00:09, 7.76it/s]
27%|██▋ | 27/100 [00:03<00:09, 7.76it/s]
28%|██▊ | 28/100 [00:03<00:09, 7.75it/s]
29%|██▉ | 29/100 [00:03<00:09, 7.75it/s]
30%|███ | 30/100 [00:03<00:09, 7.75it/s]
31%|███ | 31/100 [00:03<00:08, 7.74it/s]
32%|███▏ | 32/100 [00:04<00:08, 7.74it/s]
33%|███▎ | 33/100 [00:04<00:08, 7.74it/s]
34%|███▍ | 34/100 [00:04<00:08, 7.75it/s]
35%|███▌ | 35/100 [00:04<00:08, 7.75it/s]
36%|███▌ | 36/100 [00:04<00:08, 7.75it/s]
37%|███▋ | 37/100 [00:04<00:08, 7.75it/s]
38%|███▊ | 38/100 [00:04<00:08, 7.75it/s]
39%|███▉ | 39/100 [00:05<00:07, 7.75it/s]
40%|████ | 40/100 [00:05<00:07, 7.75it/s]
41%|████ | 41/100 [00:05<00:07, 7.75it/s]
42%|████▏ | 42/100 [00:05<00:07, 7.74it/s]
43%|████▎ | 43/100 [00:05<00:07, 7.73it/s]
44%|████▍ | 44/100 [00:05<00:07, 7.73it/s]
45%|████▌ | 45/100 [00:05<00:07, 7.73it/s]
46%|████▌ | 46/100 [00:05<00:06, 7.73it/s]
47%|████▋ | 47/100 [00:06<00:06, 7.74it/s]
48%|████▊ | 48/100 [00:06<00:06, 7.74it/s]
49%|████▉ | 49/100 [00:06<00:06, 7.74it/s]
50%|█████ | 50/100 [00:06<00:06, 7.75it/s]
51%|█████ | 51/100 [00:06<00:06, 7.75it/s]
52%|█████▏ | 52/100 [00:06<00:06, 7.75it/s]
53%|█████▎ | 53/100 [00:06<00:06, 7.74it/s]
54%|█████▍ | 54/100 [00:06<00:05, 7.74it/s]
55%|█████▌ | 55/100 [00:07<00:05, 7.74it/s]
56%|█████▌ | 56/100 [00:07<00:05, 7.74it/s]
57%|█████▋ | 57/100 [00:07<00:05, 7.74it/s]
58%|█████▊ | 58/100 [00:07<00:05, 7.74it/s]
59%|█████▉ | 59/100 [00:07<00:05, 7.74it/s]
60%|██████ | 60/100 [00:07<00:05, 7.74it/s]
61%|██████ | 61/100 [00:07<00:05, 7.74it/s]
62%|██████▏ | 62/100 [00:08<00:04, 7.74it/s]
63%|██████▎ | 63/100 [00:08<00:04, 7.74it/s]
64%|██████▍ | 64/100 [00:08<00:04, 7.74it/s]
65%|██████▌ | 65/100 [00:08<00:04, 7.74it/s]
66%|██████▌ | 66/100 [00:08<00:04, 7.74it/s]
67%|██████▋ | 67/100 [00:08<00:04, 7.74it/s]
68%|██████▊ | 68/100 [00:08<00:04, 7.73it/s]
69%|██████▉ | 69/100 [00:08<00:04, 7.72it/s]
70%|███████ | 70/100 [00:09<00:03, 7.72it/s]
71%|███████ | 71/100 [00:09<00:03, 7.73it/s]
72%|███████▏ | 72/100 [00:09<00:03, 7.72it/s]
73%|███████▎ | 73/100 [00:09<00:03, 7.72it/s]
74%|███████▍ | 74/100 [00:09<00:03, 7.72it/s]
75%|███████▌ | 75/100 [00:09<00:03, 7.72it/s]
76%|███████▌ | 76/100 [00:09<00:03, 7.73it/s]
77%|███████▋ | 77/100 [00:09<00:02, 7.74it/s]
78%|███████▊ | 78/100 [00:10<00:02, 7.73it/s]
79%|███████▉ | 79/100 [00:10<00:02, 7.74it/s]
80%|████████ | 80/100 [00:10<00:02, 7.74it/s]
81%|████████ | 81/100 [00:10<00:02, 7.73it/s]
82%|████████▏ | 82/100 [00:10<00:02, 7.73it/s]
83%|████████▎ | 83/100 [00:10<00:02, 7.73it/s]
84%|████████▍ | 84/100 [00:10<00:02, 7.73it/s]
85%|████████▌ | 85/100 [00:10<00:01, 7.73it/s]
86%|████████▌ | 86/100 [00:11<00:01, 7.72it/s]
87%|████████▋ | 87/100 [00:11<00:01, 7.71it/s]
88%|████████▊ | 88/100 [00:11<00:01, 7.72it/s]
89%|████████▉ | 89/100 [00:11<00:01, 7.72it/s]
90%|█████████ | 90/100 [00:11<00:01, 7.72it/s]
91%|█████████ | 91/100 [00:11<00:01, 7.73it/s]
92%|█████████▏| 92/100 [00:11<00:01, 7.73it/s]
93%|█████████▎| 93/100 [00:12<00:00, 7.73it/s]
94%|█████████▍| 94/100 [00:12<00:00, 7.74it/s]
95%|█████████▌| 95/100 [00:12<00:00, 7.74it/s]
96%|█████████▌| 96/100 [00:12<00:00, 7.73it/s]
97%|█████████▋| 97/100 [00:12<00:00, 7.74it/s]
98%|█████████▊| 98/100 [00:12<00:00, 7.74it/s]
99%|█████████▉| 99/100 [00:12<00:00, 7.73it/s]
100%|██████████| 100/100 [00:12<00:00, 7.73it/s]
100%|██████████| 100/100 [00:12<00:00, 7.74it/s]