firtoz
/
trellis
A powerful 3D asset generation model
Prediction
firtoz/trellis:06f601b67d482565d4724ae3bc29e5e8cbaa6c4594df900da315d6a02f37ce2aID8h775kppf9rj60ckzmsry8ckj4StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedby @firtozInput
- seed
- 0
- texture_size
- 2048
- mesh_simplify
- 0.9
- generate_color
- generate_model
- randomize_seed
- generate_normal
- ss_sampling_steps
- 12
- slat_sampling_steps
- 12
- ss_guidance_strength
- 7.5
- slat_guidance_strength
- 3
{ "seed": 0, "images": [ "https://replicate.delivery/pbxt/MClj4HeBGlMw8Jwr8nRJgG4gtSMuIzHYZmsV2XKeJkYtqFYg/yoimiya_3.png", "https://replicate.delivery/pbxt/MClj53w5pbLeLnZuBtDdhqIyolFZBXJ30nlM2d3IeCNfbawR/yoimiya_2.png", "https://replicate.delivery/pbxt/MClj4vk3vYcbRp88EPypUzwUnJFScjLLEqTDgVNKiQg2LiRS/yoimiya_1.png" ], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "ss_sampling_steps": 12, "slat_sampling_steps": 12, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "firtoz/trellis:06f601b67d482565d4724ae3bc29e5e8cbaa6c4594df900da315d6a02f37ce2a", { input: { seed: 0, images: ["https://replicate.delivery/pbxt/MClj4HeBGlMw8Jwr8nRJgG4gtSMuIzHYZmsV2XKeJkYtqFYg/yoimiya_3.png","https://replicate.delivery/pbxt/MClj53w5pbLeLnZuBtDdhqIyolFZBXJ30nlM2d3IeCNfbawR/yoimiya_2.png","https://replicate.delivery/pbxt/MClj4vk3vYcbRp88EPypUzwUnJFScjLLEqTDgVNKiQg2LiRS/yoimiya_1.png"], texture_size: 2048, mesh_simplify: 0.9, generate_color: true, generate_model: true, randomize_seed: true, generate_normal: false, ss_sampling_steps: 12, slat_sampling_steps: 12, ss_guidance_strength: 7.5, slat_guidance_strength: 3 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "firtoz/trellis:06f601b67d482565d4724ae3bc29e5e8cbaa6c4594df900da315d6a02f37ce2a", input={ "seed": 0, "images": ["https://replicate.delivery/pbxt/MClj4HeBGlMw8Jwr8nRJgG4gtSMuIzHYZmsV2XKeJkYtqFYg/yoimiya_3.png","https://replicate.delivery/pbxt/MClj53w5pbLeLnZuBtDdhqIyolFZBXJ30nlM2d3IeCNfbawR/yoimiya_2.png","https://replicate.delivery/pbxt/MClj4vk3vYcbRp88EPypUzwUnJFScjLLEqTDgVNKiQg2LiRS/yoimiya_1.png"], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": True, "generate_model": True, "randomize_seed": True, "generate_normal": False, "ss_sampling_steps": 12, "slat_sampling_steps": 12, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "06f601b67d482565d4724ae3bc29e5e8cbaa6c4594df900da315d6a02f37ce2a", "input": { "seed": 0, "images": ["https://replicate.delivery/pbxt/MClj4HeBGlMw8Jwr8nRJgG4gtSMuIzHYZmsV2XKeJkYtqFYg/yoimiya_3.png","https://replicate.delivery/pbxt/MClj53w5pbLeLnZuBtDdhqIyolFZBXJ30nlM2d3IeCNfbawR/yoimiya_2.png","https://replicate.delivery/pbxt/MClj4vk3vYcbRp88EPypUzwUnJFScjLLEqTDgVNKiQg2LiRS/yoimiya_1.png"], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "ss_sampling_steps": 12, "slat_sampling_steps": 12, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-25T09:47:25.433534Z", "created_at": "2024-12-25T09:44:13.178000Z", "data_removed": false, "error": null, "id": "8h775kppf9rj60ckzmsry8ckj4", "input": { "seed": 0, "images": [ "https://replicate.delivery/pbxt/MClj4HeBGlMw8Jwr8nRJgG4gtSMuIzHYZmsV2XKeJkYtqFYg/yoimiya_3.png", "https://replicate.delivery/pbxt/MClj53w5pbLeLnZuBtDdhqIyolFZBXJ30nlM2d3IeCNfbawR/yoimiya_2.png", "https://replicate.delivery/pbxt/MClj4vk3vYcbRp88EPypUzwUnJFScjLLEqTDgVNKiQg2LiRS/yoimiya_1.png" ], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "ss_sampling_steps": 12, "slat_sampling_steps": 12, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 }, "logs": "INFO:predict:Loading and preprocessing input images...\nINFO:predict:Saved images without background\nINFO:predict:Using randomized seed: 714495115\nINFO:predict:Running TRELLIS pipeline...\nSampling: 0%| | 0/12 [00:00<?, ?it/s]\nSampling: 8%|▊ | 1/12 [00:00<00:01, 9.78it/s]\nSampling: 25%|██▌ | 3/12 [00:00<00:00, 10.86it/s]\nSampling: 42%|████▏ | 5/12 [00:00<00:00, 11.09it/s]\nSampling: 58%|█████▊ | 7/12 [00:00<00:00, 11.19it/s]\nSampling: 75%|███████▌ | 9/12 [00:00<00:00, 11.22it/s]\nSampling: 92%|█████████▏| 11/12 [00:00<00:00, 12.30it/s]\nSampling: 100%|██████████| 12/12 [00:00<00:00, 12.15it/s]\nSampling: 0%| | 0/12 [00:00<?, ?it/s]\nSampling: 8%|▊ | 1/12 [00:00<00:02, 4.42it/s]\nSampling: 17%|█▋ | 2/12 [00:00<00:01, 5.29it/s]\nSampling: 25%|██▌ | 3/12 [00:00<00:01, 5.66it/s]\nSampling: 33%|███▎ | 4/12 [00:00<00:01, 5.86it/s]\nSampling: 42%|████▏ | 5/12 [00:00<00:01, 5.97it/s]\nSampling: 50%|█████ | 6/12 [00:01<00:00, 6.04it/s]\nSampling: 58%|█████▊ | 7/12 [00:01<00:00, 6.08it/s]\nSampling: 67%|██████▋ | 8/12 [00:01<00:00, 6.11it/s]\nSampling: 75%|███████▌ | 9/12 [00:01<00:00, 6.14it/s]\nSampling: 83%|████████▎ | 10/12 [00:01<00:00, 6.16it/s]\nSampling: 100%|██████████| 12/12 [00:01<00:00, 8.05it/s]\nSampling: 100%|██████████| 12/12 [00:01<00:00, 6.50it/s]\nINFO:predict:TRELLIS pipeline complete!\nINFO:predict:Available output formats: dict_keys(['mesh', 'gaussian'])\nINFO:predict:Starting video rendering...\nINFO:predict:Generating color video from gaussian output...\nRendering: 0it [00:00, ?it/s]\nRendering: 21it [00:00, 206.98it/s]\nRendering: 48it [00:00, 242.90it/s]\nRendering: 77it [00:00, 261.52it/s]\nRendering: 104it [00:00, 262.47it/s]\nRendering: 120it [00:00, 257.84it/s]\nINFO:predict:Available gaussian render types: ['color', 'depth']\nINFO:predict:Generated color video successfully\nINFO:predict:Video rendering complete!\nINFO:predict:Generating GLB model...\nINFO- Loaded 7519 vertices and 15028 faces.\n0% done\n9% done\n18% done\n27% done\n36% done\n45% done\n54% done\n63% done\n72% done\n81% done\n90% done\n100% done\nWARNING- Some cuts were necessary to cope with non manifold configuration.\nRendering: 0it [00:00, ?it/s]\nRendering: 13it [00:00, 123.82it/s]\nRendering: 27it [00:00, 129.03it/s]\nRendering: 41it [00:00, 130.83it/s]\nRendering: 55it [00:00, 132.20it/s]\nRendering: 69it [00:00, 132.92it/s]\nRendering: 83it [00:00, 134.45it/s]\nRendering: 97it [00:00, 134.80it/s]\nRendering: 100it [00:00, 132.81it/s]\nINFO:predict:GLB model generation complete!\nINFO:predict:Prediction complete! Returning results...", "metrics": { "predict_time": 45.160399745, "total_time": 192.255534 }, "output": { "model_file": "https://replicate.delivery/yhqm/e92dQj5ltczLUiXknNARE0JSUwrZMbdY8LY406ai77gWNMfTA/output.glb", "color_video": "https://replicate.delivery/yhqm/s4zZA2breS25B6sffONCKebGhhIjijj4vMypTIMa8Dt0qh5PB/output_color.mp4", "normal_video": null, "combined_video": null, "no_background_images": [ "https://replicate.delivery/yhqm/MfGPrnwFDER0TS2yiblgnCcXpVsQV6nk1ZCW8ukKyFfsaYenA/output_no_background_0.png", "https://replicate.delivery/yhqm/DAH2dLrIdt7KAt5ScEWLF1ewepeVBO7gdie2Peru3KLiVDzfE/output_no_background_1.png", "https://replicate.delivery/yhqm/WcIYW20ZGV4ffEtZLbuCHPYP1gwcY7Ev0fkcvUOOwGJZ1w8nA/output_no_background_2.png" ] }, "started_at": "2024-12-25T09:46:40.273135Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8h775kppf9rj60ckzmsry8ckj4", "cancel": "https://api.replicate.com/v1/predictions/8h775kppf9rj60ckzmsry8ckj4/cancel" }, "version": "06f601b67d482565d4724ae3bc29e5e8cbaa6c4594df900da315d6a02f37ce2a" }
Generated inINFO:predict:Loading and preprocessing input images... INFO:predict:Saved images without background INFO:predict:Using randomized seed: 714495115 INFO:predict:Running TRELLIS pipeline... Sampling: 0%| | 0/12 [00:00<?, ?it/s] Sampling: 8%|▊ | 1/12 [00:00<00:01, 9.78it/s] Sampling: 25%|██▌ | 3/12 [00:00<00:00, 10.86it/s] Sampling: 42%|████▏ | 5/12 [00:00<00:00, 11.09it/s] Sampling: 58%|█████▊ | 7/12 [00:00<00:00, 11.19it/s] Sampling: 75%|███████▌ | 9/12 [00:00<00:00, 11.22it/s] Sampling: 92%|█████████▏| 11/12 [00:00<00:00, 12.30it/s] Sampling: 100%|██████████| 12/12 [00:00<00:00, 12.15it/s] Sampling: 0%| | 0/12 [00:00<?, ?it/s] Sampling: 8%|▊ | 1/12 [00:00<00:02, 4.42it/s] Sampling: 17%|█▋ | 2/12 [00:00<00:01, 5.29it/s] Sampling: 25%|██▌ | 3/12 [00:00<00:01, 5.66it/s] Sampling: 33%|███▎ | 4/12 [00:00<00:01, 5.86it/s] Sampling: 42%|████▏ | 5/12 [00:00<00:01, 5.97it/s] Sampling: 50%|█████ | 6/12 [00:01<00:00, 6.04it/s] Sampling: 58%|█████▊ | 7/12 [00:01<00:00, 6.08it/s] Sampling: 67%|██████▋ | 8/12 [00:01<00:00, 6.11it/s] Sampling: 75%|███████▌ | 9/12 [00:01<00:00, 6.14it/s] Sampling: 83%|████████▎ | 10/12 [00:01<00:00, 6.16it/s] Sampling: 100%|██████████| 12/12 [00:01<00:00, 8.05it/s] Sampling: 100%|██████████| 12/12 [00:01<00:00, 6.50it/s] INFO:predict:TRELLIS pipeline complete! INFO:predict:Available output formats: dict_keys(['mesh', 'gaussian']) INFO:predict:Starting video rendering... INFO:predict:Generating color video from gaussian output... Rendering: 0it [00:00, ?it/s] Rendering: 21it [00:00, 206.98it/s] Rendering: 48it [00:00, 242.90it/s] Rendering: 77it [00:00, 261.52it/s] Rendering: 104it [00:00, 262.47it/s] Rendering: 120it [00:00, 257.84it/s] INFO:predict:Available gaussian render types: ['color', 'depth'] INFO:predict:Generated color video successfully INFO:predict:Video rendering complete! INFO:predict:Generating GLB model... INFO- Loaded 7519 vertices and 15028 faces. 0% done 9% done 18% done 27% done 36% done 45% done 54% done 63% done 72% done 81% done 90% done 100% done WARNING- Some cuts were necessary to cope with non manifold configuration. Rendering: 0it [00:00, ?it/s] Rendering: 13it [00:00, 123.82it/s] Rendering: 27it [00:00, 129.03it/s] Rendering: 41it [00:00, 130.83it/s] Rendering: 55it [00:00, 132.20it/s] Rendering: 69it [00:00, 132.92it/s] Rendering: 83it [00:00, 134.45it/s] Rendering: 97it [00:00, 134.80it/s] Rendering: 100it [00:00, 132.81it/s] INFO:predict:GLB model generation complete! INFO:predict:Prediction complete! Returning results...
Prediction
firtoz/trellis:4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251IDgp300cmz7nrj40cmc0js05ejrcStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedby @firtozInput
- seed
- 0
- texture_size
- 2048
- mesh_simplify
- 0.9
- generate_color
- generate_model
- randomize_seed
- generate_normal
- save_gaussian_ply
- ss_sampling_steps
- 38
- slat_sampling_steps
- 12
- return_no_background
- ss_guidance_strength
- 7.5
- slat_guidance_strength
- 3
{ "seed": 0, "images": [ "https://replicate.delivery/pbxt/MJaYRxQMgIzPsALScNadsZFCXR2h1n97xBzhRinmUQw9aw25/ephemeros_a_dune_sandworm_with_black_background_de398ce7-2276-4634-8f1d-c4ed2423cda4.png" ], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "save_gaussian_ply": true, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": false, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "firtoz/trellis:4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251", { input: { seed: 0, images: ["https://replicate.delivery/pbxt/MJaYRxQMgIzPsALScNadsZFCXR2h1n97xBzhRinmUQw9aw25/ephemeros_a_dune_sandworm_with_black_background_de398ce7-2276-4634-8f1d-c4ed2423cda4.png"], texture_size: 2048, mesh_simplify: 0.9, generate_color: true, generate_model: true, randomize_seed: true, generate_normal: false, save_gaussian_ply: true, ss_sampling_steps: 38, slat_sampling_steps: 12, return_no_background: false, ss_guidance_strength: 7.5, slat_guidance_strength: 3 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "firtoz/trellis:4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251", input={ "seed": 0, "images": ["https://replicate.delivery/pbxt/MJaYRxQMgIzPsALScNadsZFCXR2h1n97xBzhRinmUQw9aw25/ephemeros_a_dune_sandworm_with_black_background_de398ce7-2276-4634-8f1d-c4ed2423cda4.png"], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": True, "generate_model": True, "randomize_seed": True, "generate_normal": False, "save_gaussian_ply": True, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": False, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251", "input": { "seed": 0, "images": ["https://replicate.delivery/pbxt/MJaYRxQMgIzPsALScNadsZFCXR2h1n97xBzhRinmUQw9aw25/ephemeros_a_dune_sandworm_with_black_background_de398ce7-2276-4634-8f1d-c4ed2423cda4.png"], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "save_gaussian_ply": true, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": false, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-01-13T14:51:42.694797Z", "created_at": "2025-01-13T14:51:05.917000Z", "data_removed": false, "error": null, "id": "gp300cmz7nrj40cmc0js05ejrc", "input": { "seed": 0, "images": [ "https://replicate.delivery/pbxt/MJaYRxQMgIzPsALScNadsZFCXR2h1n97xBzhRinmUQw9aw25/ephemeros_a_dune_sandworm_with_black_background_de398ce7-2276-4634-8f1d-c4ed2423cda4.png" ], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "save_gaussian_ply": true, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": false, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 }, "logs": "INFO:predict:Loading and preprocessing input images...\nINFO:predict:Using randomized seed: 1256691986\nINFO:predict:Running TRELLIS pipeline...\nSampling: 0%| | 0/38 [00:00<?, ?it/s]\nSampling: 5%|▌ | 2/38 [00:00<00:02, 12.02it/s]\nSampling: 11%|█ | 4/38 [00:00<00:02, 11.55it/s]\nSampling: 16%|█▌ | 6/38 [00:00<00:02, 11.42it/s]\nSampling: 21%|██ | 8/38 [00:00<00:02, 11.36it/s]\nSampling: 26%|██▋ | 10/38 [00:00<00:02, 11.32it/s]\nSampling: 32%|███▏ | 12/38 [00:01<00:02, 11.30it/s]\nSampling: 37%|███▋ | 14/38 [00:01<00:02, 11.29it/s]\nSampling: 42%|████▏ | 16/38 [00:01<00:01, 11.28it/s]\nSampling: 47%|████▋ | 18/38 [00:01<00:01, 11.28it/s]\nSampling: 53%|█████▎ | 20/38 [00:01<00:01, 11.27it/s]\nSampling: 58%|█████▊ | 22/38 [00:01<00:01, 11.25it/s]\nSampling: 63%|██████▎ | 24/38 [00:02<00:01, 11.26it/s]\nSampling: 68%|██████▊ | 26/38 [00:02<00:01, 11.27it/s]\nSampling: 74%|███████▎ | 28/38 [00:02<00:00, 11.27it/s]\nSampling: 79%|███████▉ | 30/38 [00:02<00:00, 12.19it/s]\nSampling: 87%|████████▋ | 33/38 [00:02<00:00, 14.86it/s]\nSampling: 95%|█████████▍| 36/38 [00:02<00:00, 16.93it/s]\nSampling: 100%|██████████| 38/38 [00:02<00:00, 12.82it/s]\nSampling: 0%| | 0/12 [00:00<?, ?it/s]\nSampling: 8%|▊ | 1/12 [00:00<00:02, 5.13it/s]\nSampling: 17%|█▋ | 2/12 [00:00<00:01, 5.18it/s]\nSampling: 25%|██▌ | 3/12 [00:00<00:01, 5.17it/s]\nSampling: 33%|███▎ | 4/12 [00:00<00:01, 5.18it/s]\nSampling: 42%|████▏ | 5/12 [00:00<00:01, 5.18it/s]\nSampling: 50%|█████ | 6/12 [00:01<00:01, 5.18it/s]\nSampling: 58%|█████▊ | 7/12 [00:01<00:00, 5.18it/s]\nSampling: 67%|██████▋ | 8/12 [00:01<00:00, 5.19it/s]\nSampling: 75%|███████▌ | 9/12 [00:01<00:00, 5.19it/s]\nSampling: 83%|████████▎ | 10/12 [00:01<00:00, 5.19it/s]\nSampling: 100%|██████████| 12/12 [00:02<00:00, 6.78it/s]\nSampling: 100%|██████████| 12/12 [00:02<00:00, 5.65it/s]\nINFO:predict:TRELLIS pipeline complete!\nINFO:predict:Available output formats: dict_keys(['mesh', 'gaussian'])\nINFO:predict:Starting video rendering...\nINFO:predict:Generating color video from gaussian output...\nRendering: 0it [00:00, ?it/s]\nRendering: 20it [00:00, 191.48it/s]\nRendering: 42it [00:00, 206.36it/s]\nRendering: 63it [00:00, 201.27it/s]\nRendering: 84it [00:00, 203.23it/s]\nRendering: 107it [00:00, 211.09it/s]\nRendering: 120it [00:00, 205.80it/s]\nINFO:predict:Available gaussian render types: ['color', 'depth']\nINFO:predict:Generated color video successfully\nINFO:predict:Video rendering complete!\nINFO:predict:Generating GLB model...\nINFO- Loaded 11494 vertices and 22961 faces.\n0% done\n25% done\n50% done\n75% done\n100% done\nRendering: 0it [00:00, ?it/s]\nRendering: 11it [00:00, 108.20it/s]\nRendering: 22it [00:00, 106.84it/s]\nRendering: 34it [00:00, 109.84it/s]\nRendering: 45it [00:00, 109.48it/s]\nRendering: 57it [00:00, 111.09it/s]\nRendering: 69it [00:00, 110.84it/s]\nRendering: 81it [00:00, 111.59it/s]\nRendering: 93it [00:00, 111.27it/s]\nRendering: 100it [00:00, 110.63it/s]\nINFO:predict:GLB model generation complete!\nINFO:predict:Saving Gaussian point cloud as PLY...\nINFO:predict:Gaussian PLY file saved successfully!\nINFO:predict:Prediction complete! Returning results...", "metrics": { "predict_time": 36.766391289, "total_time": 36.777797 }, "output": { "model_file": "https://replicate.delivery/yhqm/5xOmxKPXDTpnIdxRRvs91WKWHTYNGmdBjuE7DbBEigZf0WCKA/output.glb", "color_video": "https://replicate.delivery/yhqm/wJejQmfsfyNf3T4soquMhYLR34F07LESybQQsy8iYmy2n2SQB/output_color.mp4", "gaussian_ply": "https://replicate.delivery/yhqm/tjyjYewq6fj2xUkco7MnifmmL2CeHG3Wfl7Zw5vdxwu0PtlgC/output_gaussian.ply", "normal_video": null, "combined_video": null, "no_background_images": null }, "started_at": "2025-01-13T14:51:05.928406Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gp300cmz7nrj40cmc0js05ejrc", "cancel": "https://api.replicate.com/v1/predictions/gp300cmz7nrj40cmc0js05ejrc/cancel" }, "version": "4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251" }
Generated inINFO:predict:Loading and preprocessing input images... INFO:predict:Using randomized seed: 1256691986 INFO:predict:Running TRELLIS pipeline... Sampling: 0%| | 0/38 [00:00<?, ?it/s] Sampling: 5%|▌ | 2/38 [00:00<00:02, 12.02it/s] Sampling: 11%|█ | 4/38 [00:00<00:02, 11.55it/s] Sampling: 16%|█▌ | 6/38 [00:00<00:02, 11.42it/s] Sampling: 21%|██ | 8/38 [00:00<00:02, 11.36it/s] Sampling: 26%|██▋ | 10/38 [00:00<00:02, 11.32it/s] Sampling: 32%|███▏ | 12/38 [00:01<00:02, 11.30it/s] Sampling: 37%|███▋ | 14/38 [00:01<00:02, 11.29it/s] Sampling: 42%|████▏ | 16/38 [00:01<00:01, 11.28it/s] Sampling: 47%|████▋ | 18/38 [00:01<00:01, 11.28it/s] Sampling: 53%|█████▎ | 20/38 [00:01<00:01, 11.27it/s] Sampling: 58%|█████▊ | 22/38 [00:01<00:01, 11.25it/s] Sampling: 63%|██████▎ | 24/38 [00:02<00:01, 11.26it/s] Sampling: 68%|██████▊ | 26/38 [00:02<00:01, 11.27it/s] Sampling: 74%|███████▎ | 28/38 [00:02<00:00, 11.27it/s] Sampling: 79%|███████▉ | 30/38 [00:02<00:00, 12.19it/s] Sampling: 87%|████████▋ | 33/38 [00:02<00:00, 14.86it/s] Sampling: 95%|█████████▍| 36/38 [00:02<00:00, 16.93it/s] Sampling: 100%|██████████| 38/38 [00:02<00:00, 12.82it/s] Sampling: 0%| | 0/12 [00:00<?, ?it/s] Sampling: 8%|▊ | 1/12 [00:00<00:02, 5.13it/s] Sampling: 17%|█▋ | 2/12 [00:00<00:01, 5.18it/s] Sampling: 25%|██▌ | 3/12 [00:00<00:01, 5.17it/s] Sampling: 33%|███▎ | 4/12 [00:00<00:01, 5.18it/s] Sampling: 42%|████▏ | 5/12 [00:00<00:01, 5.18it/s] Sampling: 50%|█████ | 6/12 [00:01<00:01, 5.18it/s] Sampling: 58%|█████▊ | 7/12 [00:01<00:00, 5.18it/s] Sampling: 67%|██████▋ | 8/12 [00:01<00:00, 5.19it/s] Sampling: 75%|███████▌ | 9/12 [00:01<00:00, 5.19it/s] Sampling: 83%|████████▎ | 10/12 [00:01<00:00, 5.19it/s] Sampling: 100%|██████████| 12/12 [00:02<00:00, 6.78it/s] Sampling: 100%|██████████| 12/12 [00:02<00:00, 5.65it/s] INFO:predict:TRELLIS pipeline complete! INFO:predict:Available output formats: dict_keys(['mesh', 'gaussian']) INFO:predict:Starting video rendering... INFO:predict:Generating color video from gaussian output... Rendering: 0it [00:00, ?it/s] Rendering: 20it [00:00, 191.48it/s] Rendering: 42it [00:00, 206.36it/s] Rendering: 63it [00:00, 201.27it/s] Rendering: 84it [00:00, 203.23it/s] Rendering: 107it [00:00, 211.09it/s] Rendering: 120it [00:00, 205.80it/s] INFO:predict:Available gaussian render types: ['color', 'depth'] INFO:predict:Generated color video successfully INFO:predict:Video rendering complete! INFO:predict:Generating GLB model... INFO- Loaded 11494 vertices and 22961 faces. 0% done 25% done 50% done 75% done 100% done Rendering: 0it [00:00, ?it/s] Rendering: 11it [00:00, 108.20it/s] Rendering: 22it [00:00, 106.84it/s] Rendering: 34it [00:00, 109.84it/s] Rendering: 45it [00:00, 109.48it/s] Rendering: 57it [00:00, 111.09it/s] Rendering: 69it [00:00, 110.84it/s] Rendering: 81it [00:00, 111.59it/s] Rendering: 93it [00:00, 111.27it/s] Rendering: 100it [00:00, 110.63it/s] INFO:predict:GLB model generation complete! INFO:predict:Saving Gaussian point cloud as PLY... INFO:predict:Gaussian PLY file saved successfully! INFO:predict:Prediction complete! Returning results...
Prediction
firtoz/trellis:4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251IDxg5e45k9znrj40cmem4v7y2t9wStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- seed
- 0
- texture_size
- 2048
- mesh_simplify
- 0.9
- generate_color
- generate_model
- randomize_seed
- generate_normal
- save_gaussian_ply
- ss_sampling_steps
- 38
- slat_sampling_steps
- 12
- return_no_background
- ss_guidance_strength
- 7.5
- slat_guidance_strength
- 3
{ "seed": 0, "images": [ "https://replicate.delivery/pbxt/ML1p0eA4AEhEvXPlIzds5RWD4axHK8Qj5276Q4Gi9aAuqg1G/20250117_144447.jpg", "https://replicate.delivery/pbxt/ML1p0XhuTj7PjRPOIfN3q0ZNurZgN3EgWjuYI5ISHMl7DlmJ/20250117_144443.jpg", "https://replicate.delivery/pbxt/ML1ozyZUROpp5iLoLEI2SWn4YBe5jmJ5DPxrjg9FivKLvKEl/20250117_144437.jpg", "https://replicate.delivery/pbxt/ML1p0TLpeGDAMlEranut1WEJNljGKP94IV0PdtRtnrbpHCeX/20250117_144431.jpg", "https://replicate.delivery/pbxt/ML1p0rXh6U26VEzshLLFZq30UzVk6zsc11AOIfhYoDIbepn1/20250117_144423.jpg" ], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "save_gaussian_ply": true, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": false, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "firtoz/trellis:4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251", { input: { seed: 0, images: ["https://replicate.delivery/pbxt/ML1p0eA4AEhEvXPlIzds5RWD4axHK8Qj5276Q4Gi9aAuqg1G/20250117_144447.jpg","https://replicate.delivery/pbxt/ML1p0XhuTj7PjRPOIfN3q0ZNurZgN3EgWjuYI5ISHMl7DlmJ/20250117_144443.jpg","https://replicate.delivery/pbxt/ML1ozyZUROpp5iLoLEI2SWn4YBe5jmJ5DPxrjg9FivKLvKEl/20250117_144437.jpg","https://replicate.delivery/pbxt/ML1p0TLpeGDAMlEranut1WEJNljGKP94IV0PdtRtnrbpHCeX/20250117_144431.jpg","https://replicate.delivery/pbxt/ML1p0rXh6U26VEzshLLFZq30UzVk6zsc11AOIfhYoDIbepn1/20250117_144423.jpg"], texture_size: 2048, mesh_simplify: 0.9, generate_color: true, generate_model: true, randomize_seed: true, generate_normal: false, save_gaussian_ply: true, ss_sampling_steps: 38, slat_sampling_steps: 12, return_no_background: false, ss_guidance_strength: 7.5, slat_guidance_strength: 3 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "firtoz/trellis:4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251", input={ "seed": 0, "images": ["https://replicate.delivery/pbxt/ML1p0eA4AEhEvXPlIzds5RWD4axHK8Qj5276Q4Gi9aAuqg1G/20250117_144447.jpg","https://replicate.delivery/pbxt/ML1p0XhuTj7PjRPOIfN3q0ZNurZgN3EgWjuYI5ISHMl7DlmJ/20250117_144443.jpg","https://replicate.delivery/pbxt/ML1ozyZUROpp5iLoLEI2SWn4YBe5jmJ5DPxrjg9FivKLvKEl/20250117_144437.jpg","https://replicate.delivery/pbxt/ML1p0TLpeGDAMlEranut1WEJNljGKP94IV0PdtRtnrbpHCeX/20250117_144431.jpg","https://replicate.delivery/pbxt/ML1p0rXh6U26VEzshLLFZq30UzVk6zsc11AOIfhYoDIbepn1/20250117_144423.jpg"], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": True, "generate_model": True, "randomize_seed": True, "generate_normal": False, "save_gaussian_ply": True, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": False, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run firtoz/trellis using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251", "input": { "seed": 0, "images": ["https://replicate.delivery/pbxt/ML1p0eA4AEhEvXPlIzds5RWD4axHK8Qj5276Q4Gi9aAuqg1G/20250117_144447.jpg","https://replicate.delivery/pbxt/ML1p0XhuTj7PjRPOIfN3q0ZNurZgN3EgWjuYI5ISHMl7DlmJ/20250117_144443.jpg","https://replicate.delivery/pbxt/ML1ozyZUROpp5iLoLEI2SWn4YBe5jmJ5DPxrjg9FivKLvKEl/20250117_144437.jpg","https://replicate.delivery/pbxt/ML1p0TLpeGDAMlEranut1WEJNljGKP94IV0PdtRtnrbpHCeX/20250117_144431.jpg","https://replicate.delivery/pbxt/ML1p0rXh6U26VEzshLLFZq30UzVk6zsc11AOIfhYoDIbepn1/20250117_144423.jpg"], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "save_gaussian_ply": true, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": false, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-01-17T16:16:06.377741Z", "created_at": "2025-01-17T16:12:18.813000Z", "data_removed": false, "error": null, "id": "xg5e45k9znrj40cmem4v7y2t9w", "input": { "seed": 0, "images": [ "https://replicate.delivery/pbxt/ML1p0eA4AEhEvXPlIzds5RWD4axHK8Qj5276Q4Gi9aAuqg1G/20250117_144447.jpg", "https://replicate.delivery/pbxt/ML1p0XhuTj7PjRPOIfN3q0ZNurZgN3EgWjuYI5ISHMl7DlmJ/20250117_144443.jpg", "https://replicate.delivery/pbxt/ML1ozyZUROpp5iLoLEI2SWn4YBe5jmJ5DPxrjg9FivKLvKEl/20250117_144437.jpg", "https://replicate.delivery/pbxt/ML1p0TLpeGDAMlEranut1WEJNljGKP94IV0PdtRtnrbpHCeX/20250117_144431.jpg", "https://replicate.delivery/pbxt/ML1p0rXh6U26VEzshLLFZq30UzVk6zsc11AOIfhYoDIbepn1/20250117_144423.jpg" ], "texture_size": 2048, "mesh_simplify": 0.9, "generate_color": true, "generate_model": true, "randomize_seed": true, "generate_normal": false, "save_gaussian_ply": true, "ss_sampling_steps": 38, "slat_sampling_steps": 12, "return_no_background": false, "ss_guidance_strength": 7.5, "slat_guidance_strength": 3 }, "logs": "INFO:predict:Loading and preprocessing input images...\nINFO:predict:Using randomized seed: 891671724\nINFO:predict:Running TRELLIS pipeline...\nSampling: 0%| | 0/38 [00:00<?, ?it/s]\nSampling: 3%|▎ | 1/38 [00:00<00:04, 9.20it/s]\nSampling: 8%|▊ | 3/38 [00:00<00:03, 10.66it/s]\nSampling: 13%|█▎ | 5/38 [00:00<00:03, 10.99it/s]\nSampling: 18%|█▊ | 7/38 [00:00<00:02, 11.12it/s]\nSampling: 24%|██▎ | 9/38 [00:00<00:02, 11.18it/s]\nSampling: 29%|██▉ | 11/38 [00:00<00:02, 11.20it/s]\nSampling: 34%|███▍ | 13/38 [00:01<00:02, 11.24it/s]\nSampling: 39%|███▉ | 15/38 [00:01<00:02, 11.26it/s]\nSampling: 45%|████▍ | 17/38 [00:01<00:01, 11.28it/s]\nSampling: 50%|█████ | 19/38 [00:01<00:01, 11.27it/s]\nSampling: 55%|█████▌ | 21/38 [00:01<00:01, 11.24it/s]\nSampling: 61%|██████ | 23/38 [00:02<00:01, 11.27it/s]\nSampling: 66%|██████▌ | 25/38 [00:02<00:01, 11.28it/s]\nSampling: 71%|███████ | 27/38 [00:02<00:00, 11.28it/s]\nSampling: 76%|███████▋ | 29/38 [00:02<00:00, 11.28it/s]\nSampling: 84%|████████▍ | 32/38 [00:02<00:00, 14.05it/s]\nSampling: 92%|█████████▏| 35/38 [00:02<00:00, 16.21it/s]\nSampling: 100%|██████████| 38/38 [00:02<00:00, 17.89it/s]\nSampling: 100%|██████████| 38/38 [00:02<00:00, 12.71it/s]\nSampling: 0%| | 0/12 [00:00<?, ?it/s]\nSampling: 8%|▊ | 1/12 [00:00<00:02, 4.00it/s]\nSampling: 17%|█▋ | 2/12 [00:00<00:02, 4.68it/s]\nSampling: 25%|██▌ | 3/12 [00:00<00:01, 4.95it/s]\nSampling: 33%|███▎ | 4/12 [00:00<00:01, 5.08it/s]\nSampling: 42%|████▏ | 5/12 [00:01<00:01, 5.15it/s]\nSampling: 50%|█████ | 6/12 [00:01<00:01, 5.16it/s]\nSampling: 58%|█████▊ | 7/12 [00:01<00:00, 5.22it/s]\nSampling: 67%|██████▋ | 8/12 [00:01<00:00, 5.26it/s]\nSampling: 75%|███████▌ | 9/12 [00:01<00:00, 5.27it/s]\nSampling: 83%|████████▎ | 10/12 [00:01<00:00, 5.26it/s]\nSampling: 100%|██████████| 12/12 [00:02<00:00, 6.88it/s]\nSampling: 100%|██████████| 12/12 [00:02<00:00, 5.60it/s]\nINFO:predict:TRELLIS pipeline complete!\nINFO:predict:Available output formats: dict_keys(['mesh', 'gaussian'])\nINFO:predict:Starting video rendering...\nINFO:predict:Generating color video from gaussian output...\nRendering: 0it [00:00, ?it/s]\nRendering: 19it [00:00, 187.20it/s]\nRendering: 45it [00:00, 226.43it/s]\nRendering: 68it [00:00, 227.46it/s]\nRendering: 93it [00:00, 235.15it/s]\nRendering: 117it [00:00, 233.63it/s]\nRendering: 120it [00:00, 229.23it/s]\nINFO:predict:Available gaussian render types: ['color', 'depth']\nINFO:predict:Generated color video successfully\nINFO:predict:Video rendering complete!\nINFO:predict:Generating GLB model...\nINFO- Loaded 11214 vertices and 22292 faces.\n0% done\n14% done\n28% done\n42% done\n57% done\n71% done\n85% done\n100% done\nWARNING- Some cuts were necessary to cope with non manifold configuration.\nRendering: 0it [00:00, ?it/s]\nRendering: 11it [00:00, 103.60it/s]\nRendering: 23it [00:00, 110.80it/s]\nRendering: 35it [00:00, 113.82it/s]\nRendering: 47it [00:00, 114.74it/s]\nRendering: 59it [00:00, 115.59it/s]\nRendering: 71it [00:00, 114.19it/s]\nRendering: 83it [00:00, 113.60it/s]\nRendering: 95it [00:00, 114.66it/s]\nRendering: 100it [00:00, 113.91it/s]\nINFO:predict:GLB model generation complete!\nINFO:predict:Saving Gaussian point cloud as PLY...\nINFO:predict:Gaussian PLY file saved successfully!\nINFO:predict:Prediction complete! Returning results...", "metrics": { "predict_time": 70.578317478, "total_time": 227.564741 }, "output": { "model_file": "https://replicate.delivery/yhqm/ZeryUVHg64we6EwKh44TxkO6HVZZWaQveBafideoZLeZR0gBF/output.glb", "color_video": "https://replicate.delivery/yhqm/OMLHE43og7ooOBlpAmkxppfXqgDdgilzbXgnsDPRInwioBDKA/output_color.mp4", "gaussian_ply": "https://replicate.delivery/yhqm/juaXDr5cNTIBNR1jx6A6J4u8pwFeXllFbvojb1ky6w7ioBDKA/output_gaussian.ply", "normal_video": null, "combined_video": null, "no_background_images": null }, "started_at": "2025-01-17T16:14:55.799423Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xg5e45k9znrj40cmem4v7y2t9w", "cancel": "https://api.replicate.com/v1/predictions/xg5e45k9znrj40cmem4v7y2t9w/cancel" }, "version": "4876f2a8da1c544772dffa32e8889da4a1bab3a1f5c1937bfcfccb99ae347251" }
Generated inINFO:predict:Loading and preprocessing input images... INFO:predict:Using randomized seed: 891671724 INFO:predict:Running TRELLIS pipeline... Sampling: 0%| | 0/38 [00:00<?, ?it/s] Sampling: 3%|▎ | 1/38 [00:00<00:04, 9.20it/s] Sampling: 8%|▊ | 3/38 [00:00<00:03, 10.66it/s] Sampling: 13%|█▎ | 5/38 [00:00<00:03, 10.99it/s] Sampling: 18%|█▊ | 7/38 [00:00<00:02, 11.12it/s] Sampling: 24%|██▎ | 9/38 [00:00<00:02, 11.18it/s] Sampling: 29%|██▉ | 11/38 [00:00<00:02, 11.20it/s] Sampling: 34%|███▍ | 13/38 [00:01<00:02, 11.24it/s] Sampling: 39%|███▉ | 15/38 [00:01<00:02, 11.26it/s] Sampling: 45%|████▍ | 17/38 [00:01<00:01, 11.28it/s] Sampling: 50%|█████ | 19/38 [00:01<00:01, 11.27it/s] Sampling: 55%|█████▌ | 21/38 [00:01<00:01, 11.24it/s] Sampling: 61%|██████ | 23/38 [00:02<00:01, 11.27it/s] Sampling: 66%|██████▌ | 25/38 [00:02<00:01, 11.28it/s] Sampling: 71%|███████ | 27/38 [00:02<00:00, 11.28it/s] Sampling: 76%|███████▋ | 29/38 [00:02<00:00, 11.28it/s] Sampling: 84%|████████▍ | 32/38 [00:02<00:00, 14.05it/s] Sampling: 92%|█████████▏| 35/38 [00:02<00:00, 16.21it/s] Sampling: 100%|██████████| 38/38 [00:02<00:00, 17.89it/s] Sampling: 100%|██████████| 38/38 [00:02<00:00, 12.71it/s] Sampling: 0%| | 0/12 [00:00<?, ?it/s] Sampling: 8%|▊ | 1/12 [00:00<00:02, 4.00it/s] Sampling: 17%|█▋ | 2/12 [00:00<00:02, 4.68it/s] Sampling: 25%|██▌ | 3/12 [00:00<00:01, 4.95it/s] Sampling: 33%|███▎ | 4/12 [00:00<00:01, 5.08it/s] Sampling: 42%|████▏ | 5/12 [00:01<00:01, 5.15it/s] Sampling: 50%|█████ | 6/12 [00:01<00:01, 5.16it/s] Sampling: 58%|█████▊ | 7/12 [00:01<00:00, 5.22it/s] Sampling: 67%|██████▋ | 8/12 [00:01<00:00, 5.26it/s] Sampling: 75%|███████▌ | 9/12 [00:01<00:00, 5.27it/s] Sampling: 83%|████████▎ | 10/12 [00:01<00:00, 5.26it/s] Sampling: 100%|██████████| 12/12 [00:02<00:00, 6.88it/s] Sampling: 100%|██████████| 12/12 [00:02<00:00, 5.60it/s] INFO:predict:TRELLIS pipeline complete! INFO:predict:Available output formats: dict_keys(['mesh', 'gaussian']) INFO:predict:Starting video rendering... INFO:predict:Generating color video from gaussian output... Rendering: 0it [00:00, ?it/s] Rendering: 19it [00:00, 187.20it/s] Rendering: 45it [00:00, 226.43it/s] Rendering: 68it [00:00, 227.46it/s] Rendering: 93it [00:00, 235.15it/s] Rendering: 117it [00:00, 233.63it/s] Rendering: 120it [00:00, 229.23it/s] INFO:predict:Available gaussian render types: ['color', 'depth'] INFO:predict:Generated color video successfully INFO:predict:Video rendering complete! INFO:predict:Generating GLB model... INFO- Loaded 11214 vertices and 22292 faces. 0% done 14% done 28% done 42% done 57% done 71% done 85% done 100% done WARNING- Some cuts were necessary to cope with non manifold configuration. Rendering: 0it [00:00, ?it/s] Rendering: 11it [00:00, 103.60it/s] Rendering: 23it [00:00, 110.80it/s] Rendering: 35it [00:00, 113.82it/s] Rendering: 47it [00:00, 114.74it/s] Rendering: 59it [00:00, 115.59it/s] Rendering: 71it [00:00, 114.19it/s] Rendering: 83it [00:00, 113.60it/s] Rendering: 95it [00:00, 114.66it/s] Rendering: 100it [00:00, 113.91it/s] INFO:predict:GLB model generation complete! INFO:predict:Saving Gaussian point cloud as PLY... INFO:predict:Gaussian PLY file saved successfully! INFO:predict:Prediction complete! Returning results...
Want to make some of these yourself?
Run this model