fofr
/
sdxl-toy-story-people
SDXL fine-tuned on the people in Toy Story (1995)
- Public
- 2.8K runs
-
L40S
- SDXL fine-tune
Prediction
fofr/sdxl-toy-story-people:e5603fd8IDg4f4iftbhosxpvr3za3bsrhzbuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- An animated TOK person
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "An animated TOK person", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", { input: { width: 1024, height: 1024, prompt: "An animated TOK person", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", input={ "width": 1024, "height": 1024, "prompt": "An animated TOK person", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK person", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-03T15:27:54.823261Z", "created_at": "2023-11-03T15:27:34.014366Z", "data_removed": false, "error": null, "id": "g4f4iftbhosxpvr3za3bsrhzbu", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK person", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 44652\nEnsuring enough disk space...\nFree disk space: 1871501414400\nDownloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar\nb'Downloaded 186 MB bytes in 5.052s (37 MB/s)\\nExtracted 186 MB in 0.057s (3.3 GB/s)\\n'\nDownloaded weights in 5.499805927276611 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: An animated <s0><s1> person\ntxt2img mode\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:07, 3.42it/s]\n 7%|▋ | 2/27 [00:00<00:07, 3.41it/s]\n 11%|█ | 3/27 [00:00<00:07, 3.41it/s]\n 15%|█▍ | 4/27 [00:01<00:06, 3.40it/s]\n 19%|█▊ | 5/27 [00:01<00:06, 3.40it/s]\n 22%|██▏ | 6/27 [00:01<00:06, 3.40it/s]\n 26%|██▌ | 7/27 [00:02<00:05, 3.39it/s]\n 30%|██▉ | 8/27 [00:02<00:05, 3.39it/s]\n 33%|███▎ | 9/27 [00:02<00:05, 3.39it/s]\n 37%|███▋ | 10/27 [00:02<00:05, 3.39it/s]\n 41%|████ | 11/27 [00:03<00:04, 3.38it/s]\n 44%|████▍ | 12/27 [00:03<00:04, 3.38it/s]\n 48%|████▊ | 13/27 [00:03<00:04, 3.39it/s]\n 52%|█████▏ | 14/27 [00:04<00:03, 3.38it/s]\n 56%|█████▌ | 15/27 [00:04<00:03, 3.38it/s]\n 59%|█████▉ | 16/27 [00:04<00:03, 3.38it/s]\n 63%|██████▎ | 17/27 [00:05<00:02, 3.38it/s]\n 67%|██████▋ | 18/27 [00:05<00:02, 3.38it/s]\n 70%|███████ | 19/27 [00:05<00:02, 3.38it/s]\n 74%|███████▍ | 20/27 [00:05<00:02, 3.37it/s]\n 78%|███████▊ | 21/27 [00:06<00:01, 3.37it/s]\n 81%|████████▏ | 22/27 [00:06<00:01, 3.37it/s]\n 85%|████████▌ | 23/27 [00:06<00:01, 3.37it/s]\n 89%|████████▉ | 24/27 [00:07<00:00, 3.37it/s]\n 93%|█████████▎| 25/27 [00:07<00:00, 3.37it/s]\n 96%|█████████▋| 26/27 [00:07<00:00, 3.37it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.37it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.38it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.99it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 3.95it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.95it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.96it/s]", "metrics": { "predict_time": 17.156869, "total_time": 20.808895 }, "output": [ "https://replicate.delivery/pbxt/usvwYUwOWZbRFJ5Kj05OGXAUev9wdFjHwmaqOfMRNRu5Ns0RA/out-0.png" ], "started_at": "2023-11-03T15:27:37.666392Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/g4f4iftbhosxpvr3za3bsrhzbu", "cancel": "https://api.replicate.com/v1/predictions/g4f4iftbhosxpvr3za3bsrhzbu/cancel" }, "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10" }
Generated inUsing seed: 44652 Ensuring enough disk space... Free disk space: 1871501414400 Downloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar b'Downloaded 186 MB bytes in 5.052s (37 MB/s)\nExtracted 186 MB in 0.057s (3.3 GB/s)\n' Downloaded weights in 5.499805927276611 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: An animated <s0><s1> person txt2img mode 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:07, 3.42it/s] 7%|▋ | 2/27 [00:00<00:07, 3.41it/s] 11%|█ | 3/27 [00:00<00:07, 3.41it/s] 15%|█▍ | 4/27 [00:01<00:06, 3.40it/s] 19%|█▊ | 5/27 [00:01<00:06, 3.40it/s] 22%|██▏ | 6/27 [00:01<00:06, 3.40it/s] 26%|██▌ | 7/27 [00:02<00:05, 3.39it/s] 30%|██▉ | 8/27 [00:02<00:05, 3.39it/s] 33%|███▎ | 9/27 [00:02<00:05, 3.39it/s] 37%|███▋ | 10/27 [00:02<00:05, 3.39it/s] 41%|████ | 11/27 [00:03<00:04, 3.38it/s] 44%|████▍ | 12/27 [00:03<00:04, 3.38it/s] 48%|████▊ | 13/27 [00:03<00:04, 3.39it/s] 52%|█████▏ | 14/27 [00:04<00:03, 3.38it/s] 56%|█████▌ | 15/27 [00:04<00:03, 3.38it/s] 59%|█████▉ | 16/27 [00:04<00:03, 3.38it/s] 63%|██████▎ | 17/27 [00:05<00:02, 3.38it/s] 67%|██████▋ | 18/27 [00:05<00:02, 3.38it/s] 70%|███████ | 19/27 [00:05<00:02, 3.38it/s] 74%|███████▍ | 20/27 [00:05<00:02, 3.37it/s] 78%|███████▊ | 21/27 [00:06<00:01, 3.37it/s] 81%|████████▏ | 22/27 [00:06<00:01, 3.37it/s] 85%|████████▌ | 23/27 [00:06<00:01, 3.37it/s] 89%|████████▉ | 24/27 [00:07<00:00, 3.37it/s] 93%|█████████▎| 25/27 [00:07<00:00, 3.37it/s] 96%|█████████▋| 26/27 [00:07<00:00, 3.37it/s] 100%|██████████| 27/27 [00:07<00:00, 3.37it/s] 100%|██████████| 27/27 [00:07<00:00, 3.38it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 3.99it/s] 67%|██████▋ | 2/3 [00:00<00:00, 3.95it/s] 100%|██████████| 3/3 [00:00<00:00, 3.95it/s] 100%|██████████| 3/3 [00:00<00:00, 3.96it/s]
Prediction
fofr/sdxl-toy-story-people:e5603fd8IDu6uipw3bsd2fcvbggnks3rkfryStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1024
- height
- 1024
- prompt
- An animated TOK Elon Musk person, 90s animation
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- broken, distorted, ugly, two people
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "An animated TOK Elon Musk person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", { input: { width: 1024, height: 1024, prompt: "An animated TOK Elon Musk person, 90s animation", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "broken, distorted, ugly, two people", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", input={ "width": 1024, "height": 1024, "prompt": "An animated TOK Elon Musk person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Elon Musk person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-03T15:31:38.672950Z", "created_at": "2023-11-03T15:31:26.121340Z", "data_removed": false, "error": null, "id": "u6uipw3bsd2fcvbggnks3rkfry", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Elon Musk person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 25576\nEnsuring enough disk space...\nFree disk space: 2068550201344\nDownloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar\nb'Downloaded 186 MB bytes in 0.239s (779 MB/s)\\nExtracted 186 MB in 0.058s (3.2 GB/s)\\n'\nDownloaded weights in 0.41710972785949707 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: An animated <s0><s1> Elon Musk person, 90s animation\ntxt2img mode\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:07, 3.69it/s]\n 7%|▋ | 2/27 [00:00<00:06, 3.68it/s]\n 11%|█ | 3/27 [00:00<00:06, 3.67it/s]\n 15%|█▍ | 4/27 [00:01<00:06, 3.66it/s]\n 19%|█▊ | 5/27 [00:01<00:06, 3.66it/s]\n 22%|██▏ | 6/27 [00:01<00:05, 3.65it/s]\n 26%|██▌ | 7/27 [00:01<00:05, 3.65it/s]\n 30%|██▉ | 8/27 [00:02<00:05, 3.65it/s]\n 33%|███▎ | 9/27 [00:02<00:04, 3.65it/s]\n 37%|███▋ | 10/27 [00:02<00:04, 3.65it/s]\n 41%|████ | 11/27 [00:03<00:04, 3.65it/s]\n 44%|████▍ | 12/27 [00:03<00:04, 3.65it/s]\n 48%|████▊ | 13/27 [00:03<00:03, 3.65it/s]\n 52%|█████▏ | 14/27 [00:03<00:03, 3.65it/s]\n 56%|█████▌ | 15/27 [00:04<00:03, 3.64it/s]\n 59%|█████▉ | 16/27 [00:04<00:03, 3.64it/s]\n 63%|██████▎ | 17/27 [00:04<00:02, 3.64it/s]\n 67%|██████▋ | 18/27 [00:04<00:02, 3.64it/s]\n 70%|███████ | 19/27 [00:05<00:02, 3.64it/s]\n 74%|███████▍ | 20/27 [00:05<00:01, 3.64it/s]\n 78%|███████▊ | 21/27 [00:05<00:01, 3.64it/s]\n 81%|████████▏ | 22/27 [00:06<00:01, 3.64it/s]\n 85%|████████▌ | 23/27 [00:06<00:01, 3.64it/s]\n 89%|████████▉ | 24/27 [00:06<00:00, 3.64it/s]\n 93%|█████████▎| 25/27 [00:06<00:00, 3.64it/s]\n 96%|█████████▋| 26/27 [00:07<00:00, 3.64it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.64it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.65it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.02it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.14it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.18it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.16it/s]", "metrics": { "predict_time": 11.144244, "total_time": 12.55161 }, "output": [ "https://replicate.delivery/pbxt/N6IMseeujGsMPkCtDdSXlm48qxektSqBu6F2qlfTBwknFxSHB/out-0.png" ], "started_at": "2023-11-03T15:31:27.528706Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/u6uipw3bsd2fcvbggnks3rkfry", "cancel": "https://api.replicate.com/v1/predictions/u6uipw3bsd2fcvbggnks3rkfry/cancel" }, "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10" }
Generated inUsing seed: 25576 Ensuring enough disk space... Free disk space: 2068550201344 Downloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar b'Downloaded 186 MB bytes in 0.239s (779 MB/s)\nExtracted 186 MB in 0.058s (3.2 GB/s)\n' Downloaded weights in 0.41710972785949707 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: An animated <s0><s1> Elon Musk person, 90s animation txt2img mode 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:07, 3.69it/s] 7%|▋ | 2/27 [00:00<00:06, 3.68it/s] 11%|█ | 3/27 [00:00<00:06, 3.67it/s] 15%|█▍ | 4/27 [00:01<00:06, 3.66it/s] 19%|█▊ | 5/27 [00:01<00:06, 3.66it/s] 22%|██▏ | 6/27 [00:01<00:05, 3.65it/s] 26%|██▌ | 7/27 [00:01<00:05, 3.65it/s] 30%|██▉ | 8/27 [00:02<00:05, 3.65it/s] 33%|███▎ | 9/27 [00:02<00:04, 3.65it/s] 37%|███▋ | 10/27 [00:02<00:04, 3.65it/s] 41%|████ | 11/27 [00:03<00:04, 3.65it/s] 44%|████▍ | 12/27 [00:03<00:04, 3.65it/s] 48%|████▊ | 13/27 [00:03<00:03, 3.65it/s] 52%|█████▏ | 14/27 [00:03<00:03, 3.65it/s] 56%|█████▌ | 15/27 [00:04<00:03, 3.64it/s] 59%|█████▉ | 16/27 [00:04<00:03, 3.64it/s] 63%|██████▎ | 17/27 [00:04<00:02, 3.64it/s] 67%|██████▋ | 18/27 [00:04<00:02, 3.64it/s] 70%|███████ | 19/27 [00:05<00:02, 3.64it/s] 74%|███████▍ | 20/27 [00:05<00:01, 3.64it/s] 78%|███████▊ | 21/27 [00:05<00:01, 3.64it/s] 81%|████████▏ | 22/27 [00:06<00:01, 3.64it/s] 85%|████████▌ | 23/27 [00:06<00:01, 3.64it/s] 89%|████████▉ | 24/27 [00:06<00:00, 3.64it/s] 93%|█████████▎| 25/27 [00:06<00:00, 3.64it/s] 96%|█████████▋| 26/27 [00:07<00:00, 3.64it/s] 100%|██████████| 27/27 [00:07<00:00, 3.64it/s] 100%|██████████| 27/27 [00:07<00:00, 3.65it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 4.02it/s] 67%|██████▋ | 2/3 [00:00<00:00, 4.14it/s] 100%|██████████| 3/3 [00:00<00:00, 4.18it/s] 100%|██████████| 3/3 [00:00<00:00, 4.16it/s]
Prediction
fofr/sdxl-toy-story-people:e5603fd8IDewzzymdbzgjyf32fzetfwnvywiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- An animated TOK Taylor Swift person, 90s animation
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- broken, distorted, ugly, two people, child
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "An animated TOK Taylor Swift person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", { input: { width: 1024, height: 1024, prompt: "An animated TOK Taylor Swift person, 90s animation", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "broken, distorted, ugly, two people, child", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", input={ "width": 1024, "height": 1024, "prompt": "An animated TOK Taylor Swift person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Taylor Swift person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-03T15:33:04.572474Z", "created_at": "2023-11-03T15:32:42.281177Z", "data_removed": false, "error": null, "id": "ewzzymdbzgjyf32fzetfwnvywi", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Taylor Swift person, 90s animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 23310\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: An animated <s0><s1> Taylor Swift person, 90s animation\ntxt2img mode\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:07, 3.64it/s]\n 7%|▋ | 2/27 [00:00<00:06, 3.64it/s]\n 11%|█ | 3/27 [00:00<00:06, 3.65it/s]\n 15%|█▍ | 4/27 [00:01<00:06, 3.65it/s]\n 19%|█▊ | 5/27 [00:01<00:06, 3.64it/s]\n 22%|██▏ | 6/27 [00:01<00:05, 3.65it/s]\n 26%|██▌ | 7/27 [00:01<00:05, 3.65it/s]\n 30%|██▉ | 8/27 [00:02<00:05, 3.65it/s]\n 33%|███▎ | 9/27 [00:02<00:04, 3.65it/s]\n 37%|███▋ | 10/27 [00:02<00:04, 3.65it/s]\n 41%|████ | 11/27 [00:03<00:04, 3.64it/s]\n 44%|████▍ | 12/27 [00:03<00:04, 3.65it/s]\n 48%|████▊ | 13/27 [00:03<00:03, 3.65it/s]\n 52%|█████▏ | 14/27 [00:03<00:03, 3.64it/s]\n 56%|█████▌ | 15/27 [00:04<00:03, 3.64it/s]\n 59%|█████▉ | 16/27 [00:04<00:03, 3.64it/s]\n 63%|██████▎ | 17/27 [00:04<00:02, 3.64it/s]\n 67%|██████▋ | 18/27 [00:04<00:02, 3.65it/s]\n 70%|███████ | 19/27 [00:05<00:02, 3.64it/s]\n 74%|███████▍ | 20/27 [00:05<00:01, 3.65it/s]\n 78%|███████▊ | 21/27 [00:05<00:01, 3.64it/s]\n 81%|████████▏ | 22/27 [00:06<00:01, 3.64it/s]\n 85%|████████▌ | 23/27 [00:06<00:01, 3.64it/s]\n 89%|████████▉ | 24/27 [00:06<00:00, 3.64it/s]\n 93%|█████████▎| 25/27 [00:06<00:00, 3.64it/s]\n 96%|█████████▋| 26/27 [00:07<00:00, 3.63it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.64it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.64it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.27it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.22it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.22it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.22it/s]", "metrics": { "predict_time": 10.880559, "total_time": 22.291297 }, "output": [ "https://replicate.delivery/pbxt/bWk1ofSS2pXteUNW8pAzpRHcOWJ2o2INzYtAA2bKjv2vSs0RA/out-0.png" ], "started_at": "2023-11-03T15:32:53.691915Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ewzzymdbzgjyf32fzetfwnvywi", "cancel": "https://api.replicate.com/v1/predictions/ewzzymdbzgjyf32fzetfwnvywi/cancel" }, "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10" }
Generated inUsing seed: 23310 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: An animated <s0><s1> Taylor Swift person, 90s animation txt2img mode 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:07, 3.64it/s] 7%|▋ | 2/27 [00:00<00:06, 3.64it/s] 11%|█ | 3/27 [00:00<00:06, 3.65it/s] 15%|█▍ | 4/27 [00:01<00:06, 3.65it/s] 19%|█▊ | 5/27 [00:01<00:06, 3.64it/s] 22%|██▏ | 6/27 [00:01<00:05, 3.65it/s] 26%|██▌ | 7/27 [00:01<00:05, 3.65it/s] 30%|██▉ | 8/27 [00:02<00:05, 3.65it/s] 33%|███▎ | 9/27 [00:02<00:04, 3.65it/s] 37%|███▋ | 10/27 [00:02<00:04, 3.65it/s] 41%|████ | 11/27 [00:03<00:04, 3.64it/s] 44%|████▍ | 12/27 [00:03<00:04, 3.65it/s] 48%|████▊ | 13/27 [00:03<00:03, 3.65it/s] 52%|█████▏ | 14/27 [00:03<00:03, 3.64it/s] 56%|█████▌ | 15/27 [00:04<00:03, 3.64it/s] 59%|█████▉ | 16/27 [00:04<00:03, 3.64it/s] 63%|██████▎ | 17/27 [00:04<00:02, 3.64it/s] 67%|██████▋ | 18/27 [00:04<00:02, 3.65it/s] 70%|███████ | 19/27 [00:05<00:02, 3.64it/s] 74%|███████▍ | 20/27 [00:05<00:01, 3.65it/s] 78%|███████▊ | 21/27 [00:05<00:01, 3.64it/s] 81%|████████▏ | 22/27 [00:06<00:01, 3.64it/s] 85%|████████▌ | 23/27 [00:06<00:01, 3.64it/s] 89%|████████▉ | 24/27 [00:06<00:00, 3.64it/s] 93%|█████████▎| 25/27 [00:06<00:00, 3.64it/s] 96%|█████████▋| 26/27 [00:07<00:00, 3.63it/s] 100%|██████████| 27/27 [00:07<00:00, 3.64it/s] 100%|██████████| 27/27 [00:07<00:00, 3.64it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 4.27it/s] 67%|██████▋ | 2/3 [00:00<00:00, 4.22it/s] 100%|██████████| 3/3 [00:00<00:00, 4.22it/s] 100%|██████████| 3/3 [00:00<00:00, 4.22it/s]
Prediction
fofr/sdxl-toy-story-people:e5603fd8ID6tuaondbpx3z5roduxcbyfc25mStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- An animated TOK Kanye West person, 90s 3D animation
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- broken, distorted, ugly, two people, child
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "An animated TOK Kanye West person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", { input: { width: 1024, height: 1024, prompt: "An animated TOK Kanye West person, 90s 3D animation", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "broken, distorted, ugly, two people, child", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", input={ "width": 1024, "height": 1024, "prompt": "An animated TOK Kanye West person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Kanye West person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-03T15:36:28.405324Z", "created_at": "2023-11-03T15:35:58.036217Z", "data_removed": false, "error": null, "id": "6tuaondbpx3z5roduxcbyfc25m", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Kanye West person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 1495\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: An animated <s0><s1> Kanye West person, 90s 3D animation\ntxt2img mode\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:07, 3.42it/s]\n 7%|▋ | 2/27 [00:00<00:07, 3.40it/s]\n 11%|█ | 3/27 [00:00<00:07, 3.40it/s]\n 15%|█▍ | 4/27 [00:01<00:06, 3.39it/s]\n 19%|█▊ | 5/27 [00:01<00:06, 3.39it/s]\n 22%|██▏ | 6/27 [00:01<00:06, 3.39it/s]\n 26%|██▌ | 7/27 [00:02<00:05, 3.39it/s]\n 30%|██▉ | 8/27 [00:02<00:05, 3.39it/s]\n 33%|███▎ | 9/27 [00:02<00:05, 3.38it/s]\n 37%|███▋ | 10/27 [00:02<00:05, 3.38it/s]\n 41%|████ | 11/27 [00:03<00:04, 3.38it/s]\n 44%|████▍ | 12/27 [00:03<00:04, 3.38it/s]\n 48%|████▊ | 13/27 [00:03<00:04, 3.38it/s]\n 52%|█████▏ | 14/27 [00:04<00:03, 3.38it/s]\n 56%|█████▌ | 15/27 [00:04<00:03, 3.37it/s]\n 59%|█████▉ | 16/27 [00:04<00:03, 3.37it/s]\n 63%|██████▎ | 17/27 [00:05<00:02, 3.37it/s]\n 67%|██████▋ | 18/27 [00:05<00:02, 3.37it/s]\n 70%|███████ | 19/27 [00:05<00:02, 3.37it/s]\n 74%|███████▍ | 20/27 [00:05<00:02, 3.37it/s]\n 78%|███████▊ | 21/27 [00:06<00:01, 3.36it/s]\n 81%|████████▏ | 22/27 [00:06<00:01, 3.37it/s]\n 85%|████████▌ | 23/27 [00:06<00:01, 3.37it/s]\n 89%|████████▉ | 24/27 [00:07<00:00, 3.37it/s]\n 93%|█████████▎| 25/27 [00:07<00:00, 3.37it/s]\n 96%|█████████▋| 26/27 [00:07<00:00, 3.36it/s]\n100%|██████████| 27/27 [00:08<00:00, 3.36it/s]\n100%|██████████| 27/27 [00:08<00:00, 3.37it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.98it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 3.97it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.94it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.95it/s]", "metrics": { "predict_time": 11.525916, "total_time": 30.369107 }, "output": [ "https://replicate.delivery/pbxt/JyOlzpKseZW3eUDGROU0UOsUR2vcz0pFzXOAfASsCrl2rYpjA/out-0.png" ], "started_at": "2023-11-03T15:36:16.879408Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6tuaondbpx3z5roduxcbyfc25m", "cancel": "https://api.replicate.com/v1/predictions/6tuaondbpx3z5roduxcbyfc25m/cancel" }, "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10" }
Generated inUsing seed: 1495 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: An animated <s0><s1> Kanye West person, 90s 3D animation txt2img mode 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:07, 3.42it/s] 7%|▋ | 2/27 [00:00<00:07, 3.40it/s] 11%|█ | 3/27 [00:00<00:07, 3.40it/s] 15%|█▍ | 4/27 [00:01<00:06, 3.39it/s] 19%|█▊ | 5/27 [00:01<00:06, 3.39it/s] 22%|██▏ | 6/27 [00:01<00:06, 3.39it/s] 26%|██▌ | 7/27 [00:02<00:05, 3.39it/s] 30%|██▉ | 8/27 [00:02<00:05, 3.39it/s] 33%|███▎ | 9/27 [00:02<00:05, 3.38it/s] 37%|███▋ | 10/27 [00:02<00:05, 3.38it/s] 41%|████ | 11/27 [00:03<00:04, 3.38it/s] 44%|████▍ | 12/27 [00:03<00:04, 3.38it/s] 48%|████▊ | 13/27 [00:03<00:04, 3.38it/s] 52%|█████▏ | 14/27 [00:04<00:03, 3.38it/s] 56%|█████▌ | 15/27 [00:04<00:03, 3.37it/s] 59%|█████▉ | 16/27 [00:04<00:03, 3.37it/s] 63%|██████▎ | 17/27 [00:05<00:02, 3.37it/s] 67%|██████▋ | 18/27 [00:05<00:02, 3.37it/s] 70%|███████ | 19/27 [00:05<00:02, 3.37it/s] 74%|███████▍ | 20/27 [00:05<00:02, 3.37it/s] 78%|███████▊ | 21/27 [00:06<00:01, 3.36it/s] 81%|████████▏ | 22/27 [00:06<00:01, 3.37it/s] 85%|████████▌ | 23/27 [00:06<00:01, 3.37it/s] 89%|████████▉ | 24/27 [00:07<00:00, 3.37it/s] 93%|█████████▎| 25/27 [00:07<00:00, 3.37it/s] 96%|█████████▋| 26/27 [00:07<00:00, 3.36it/s] 100%|██████████| 27/27 [00:08<00:00, 3.36it/s] 100%|██████████| 27/27 [00:08<00:00, 3.37it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 3.98it/s] 67%|██████▋ | 2/3 [00:00<00:00, 3.97it/s] 100%|██████████| 3/3 [00:00<00:00, 3.94it/s] 100%|██████████| 3/3 [00:00<00:00, 3.95it/s]
Prediction
fofr/sdxl-toy-story-people:e5603fd8ID3jgrw73b3bmpcvqpv4nbmcic7mStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- An animated TOK Angelina Jolie person, 90s 3D animation
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- broken, distorted, ugly, two people, child
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "An animated TOK Angelina Jolie person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", { input: { width: 1024, height: 1024, prompt: "An animated TOK Angelina Jolie person, 90s 3D animation", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "broken, distorted, ugly, two people, child", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-toy-story-people:e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", input={ "width": 1024, "height": 1024, "prompt": "An animated TOK Angelina Jolie person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-toy-story-people using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Angelina Jolie person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-03T15:38:52.334336Z", "created_at": "2023-11-03T15:38:38.813625Z", "data_removed": false, "error": null, "id": "3jgrw73b3bmpcvqpv4nbmcic7m", "input": { "width": 1024, "height": 1024, "prompt": "An animated TOK Angelina Jolie person, 90s 3D animation", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "broken, distorted, ugly, two people, child", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 2872\nEnsuring enough disk space...\nFree disk space: 3381300543488\nDownloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar\nb'Downloaded 186 MB bytes in 0.229s (811 MB/s)\\nExtracted 186 MB in 0.065s (2.9 GB/s)\\n'\nDownloaded weights in 0.42457032203674316 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: An animated <s0><s1> Angelina Jolie person, 90s 3D animation\ntxt2img mode\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:07, 3.68it/s]\n 7%|▋ | 2/27 [00:00<00:06, 3.66it/s]\n 11%|█ | 3/27 [00:00<00:06, 3.66it/s]\n 15%|█▍ | 4/27 [00:01<00:06, 3.65it/s]\n 19%|█▊ | 5/27 [00:01<00:06, 3.65it/s]\n 22%|██▏ | 6/27 [00:01<00:05, 3.65it/s]\n 26%|██▌ | 7/27 [00:01<00:05, 3.65it/s]\n 30%|██▉ | 8/27 [00:02<00:05, 3.64it/s]\n 33%|███▎ | 9/27 [00:02<00:04, 3.64it/s]\n 37%|███▋ | 10/27 [00:02<00:04, 3.64it/s]\n 41%|████ | 11/27 [00:03<00:04, 3.64it/s]\n 44%|████▍ | 12/27 [00:03<00:04, 3.64it/s]\n 48%|████▊ | 13/27 [00:03<00:03, 3.64it/s]\n 52%|█████▏ | 14/27 [00:03<00:03, 3.64it/s]\n 56%|█████▌ | 15/27 [00:04<00:03, 3.64it/s]\n 59%|█████▉ | 16/27 [00:04<00:03, 3.64it/s]\n 63%|██████▎ | 17/27 [00:04<00:02, 3.64it/s]\n 67%|██████▋ | 18/27 [00:04<00:02, 3.64it/s]\n 70%|███████ | 19/27 [00:05<00:02, 3.64it/s]\n 74%|███████▍ | 20/27 [00:05<00:01, 3.64it/s]\n 78%|███████▊ | 21/27 [00:05<00:01, 3.64it/s]\n 81%|████████▏ | 22/27 [00:06<00:01, 3.64it/s]\n 85%|████████▌ | 23/27 [00:06<00:01, 3.64it/s]\n 89%|████████▉ | 24/27 [00:06<00:00, 3.63it/s]\n 93%|█████████▎| 25/27 [00:06<00:00, 3.64it/s]\n 96%|█████████▋| 26/27 [00:07<00:00, 3.64it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.63it/s]\n100%|██████████| 27/27 [00:07<00:00, 3.64it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.24it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.22it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.20it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.21it/s]", "metrics": { "predict_time": 10.774634, "total_time": 13.520711 }, "output": [ "https://replicate.delivery/pbxt/S1RoMfQMUnS8TChCMtHTyB3Ws8qd1xGjHhzwf3kPtKeWwYpjA/out-0.png" ], "started_at": "2023-11-03T15:38:41.559702Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3jgrw73b3bmpcvqpv4nbmcic7m", "cancel": "https://api.replicate.com/v1/predictions/3jgrw73b3bmpcvqpv4nbmcic7m/cancel" }, "version": "e5603fd85f4cb9bffb1e49a1a1add5f3fcf3f2d5383bc84fd3ff7cc4fe5beb10" }
Generated inUsing seed: 2872 Ensuring enough disk space... Free disk space: 3381300543488 Downloading weights: https://replicate.delivery/pbxt/FoFPwBsrDfUBWq1rbROyhxqlncif4fghJN4I0AZgaFgzevSHB/trained_model.tar b'Downloaded 186 MB bytes in 0.229s (811 MB/s)\nExtracted 186 MB in 0.065s (2.9 GB/s)\n' Downloaded weights in 0.42457032203674316 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: An animated <s0><s1> Angelina Jolie person, 90s 3D animation txt2img mode 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:07, 3.68it/s] 7%|▋ | 2/27 [00:00<00:06, 3.66it/s] 11%|█ | 3/27 [00:00<00:06, 3.66it/s] 15%|█▍ | 4/27 [00:01<00:06, 3.65it/s] 19%|█▊ | 5/27 [00:01<00:06, 3.65it/s] 22%|██▏ | 6/27 [00:01<00:05, 3.65it/s] 26%|██▌ | 7/27 [00:01<00:05, 3.65it/s] 30%|██▉ | 8/27 [00:02<00:05, 3.64it/s] 33%|███▎ | 9/27 [00:02<00:04, 3.64it/s] 37%|███▋ | 10/27 [00:02<00:04, 3.64it/s] 41%|████ | 11/27 [00:03<00:04, 3.64it/s] 44%|████▍ | 12/27 [00:03<00:04, 3.64it/s] 48%|████▊ | 13/27 [00:03<00:03, 3.64it/s] 52%|█████▏ | 14/27 [00:03<00:03, 3.64it/s] 56%|█████▌ | 15/27 [00:04<00:03, 3.64it/s] 59%|█████▉ | 16/27 [00:04<00:03, 3.64it/s] 63%|██████▎ | 17/27 [00:04<00:02, 3.64it/s] 67%|██████▋ | 18/27 [00:04<00:02, 3.64it/s] 70%|███████ | 19/27 [00:05<00:02, 3.64it/s] 74%|███████▍ | 20/27 [00:05<00:01, 3.64it/s] 78%|███████▊ | 21/27 [00:05<00:01, 3.64it/s] 81%|████████▏ | 22/27 [00:06<00:01, 3.64it/s] 85%|████████▌ | 23/27 [00:06<00:01, 3.64it/s] 89%|████████▉ | 24/27 [00:06<00:00, 3.63it/s] 93%|█████████▎| 25/27 [00:06<00:00, 3.64it/s] 96%|█████████▋| 26/27 [00:07<00:00, 3.64it/s] 100%|██████████| 27/27 [00:07<00:00, 3.63it/s] 100%|██████████| 27/27 [00:07<00:00, 3.64it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 4.24it/s] 67%|██████▋ | 2/3 [00:00<00:00, 4.22it/s] 100%|██████████| 3/3 [00:00<00:00, 4.20it/s] 100%|██████████| 3/3 [00:00<00:00, 4.21it/s]
Want to make some of these yourself?
Run this model