jigsawstack / object-detection

Recognise objects within an image with great accuracy.

  • Public
  • 7 runs
Iterate in playground

Input

string
Shift + Return to add a new line

The image URL. Not required if file_store_key is specified.

string
Shift + Return to add a new line

The key used to store the image on JigsawStack file Storage. Not required if url is specified.

string[]
wine glass

Array of prompts for targeted object detection. Each prompt must be between 1-150 characters.

string[]
object_detection

Array of features to enable. Available options: object_detection, gui. Must contain at least one feature.

Default: ["object_detection"]

boolean

Whether to return an annotated image with detected objects highlighted.

Default: false

string

Format for returning images. Available options: url, base64.

Default: "url"

string
Shift + Return to add a new line

🔐 Your JigsawStack API Key (required)

Output

{ "success": true, "annotated_image": "https://jigsawstack-temp.b1e91a466694ad4af04df5d05ca12d93.r2.cloudflarestorage.com/temp/a77616d3-f4be-42a9-879d-62e80fd64c7f.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=7b9a19349842b7b1a9e4c2e19f05b232%2F20250627%2Fauto%2Fs3%2Faws4_request&X-Amz-Date=20250627T185743Z&X-Amz-Expires=604800&X-Amz-Signature=624a6fd774f35eb2a9bb23f1fcc5c5c213ef4da47a4d46bcc63e021b1a621ff3&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject", "objects": [ { "bounds": { "top_left": { "x": 675, "y": 95 }, "top_right": { "x": 742, "y": 95 }, "bottom_left": { "x": 675, "y": 228 }, "bottom_right": { "x": 742, "y": 228 }, "width": 67, "height": 133 }, "label": "wine glass_0", "mask": "https://jigsawstack-temp.b1e91a466694ad4af04df5d05ca12d93.r2.cloudflarestorage.com/temp/fa2a6130-d539-4b43-b592-9cd2daae95f8.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=7b9a19349842b7b1a9e4c2e19f05b232%2F20250627%2Fauto%2Fs3%2Faws4_request&X-Amz-Date=20250627T185742Z&X-Amz-Expires=604800&X-Amz-Signature=c942c111f389634e13e0c71638fb17179ac79e0ee42d7abe847674cbf158a463&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject" }, { "bounds": { "top_left": { "x": 566, "y": 278 }, "top_right": { "x": 629, "y": 278 }, "bottom_left": { "x": 566, "y": 403 }, "bottom_right": { "x": 629, "y": 403 }, "width": 63, "height": 125 }, "label": "wine glass_1", "mask": "https://jigsawstack-temp.b1e91a466694ad4af04df5d05ca12d93.r2.cloudflarestorage.com/temp/2cbb2b35-2ec1-4abc-8f07-960fba452207.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=7b9a19349842b7b1a9e4c2e19f05b232%2F20250627%2Fauto%2Fs3%2Faws4_request&X-Amz-Date=20250627T185742Z&X-Amz-Expires=604800&X-Amz-Signature=c5a449afa7b87a777cc1a845602ea8283ecd4e907cc2b971ad4d9395752ad83c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject" }, { "bounds": { "top_left": { "x": 468, "y": 275 }, "top_right": { "x": 533, "y": 275 }, "bottom_left": { "x": 468, "y": 402 }, "bottom_right": { "x": 533, "y": 402 }, "width": 65, "height": 127 }, "label": "wine glass_2", "mask": "https://jigsawstack-temp.b1e91a466694ad4af04df5d05ca12d93.r2.cloudflarestorage.com/temp/6e08ff3a-5e3c-43a8-96a7-302937bc0d76.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=7b9a19349842b7b1a9e4c2e19f05b232%2F20250627%2Fauto%2Fs3%2Faws4_request&X-Amz-Date=20250627T185742Z&X-Amz-Expires=604800&X-Amz-Signature=21eebe9ecc7d0c6ea511c49331fe6ae43a1efbd90ef9a681e00aca998f6a3a1b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject" }, { "bounds": { "top_left": { "x": 434, "y": 376 }, "top_right": { "x": 487, "y": 376 }, "bottom_left": { "x": 434, "y": 465 }, "bottom_right": { "x": 487, "y": 465 }, "width": 53, "height": 89 }, "label": "wine glass_3", "mask": "https://jigsawstack-temp.b1e91a466694ad4af04df5d05ca12d93.r2.cloudflarestorage.com/temp/1c1cd1e6-2779-46d8-8499-8d342c56b89e.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=7b9a19349842b7b1a9e4c2e19f05b232%2F20250627%2Fauto%2Fs3%2Faws4_request&X-Amz-Date=20250627T185743Z&X-Amz-Expires=604800&X-Amz-Signature=172074cb305ea758e6db007a794f38c959bbc31f0b29ae309e2d06b6ea7288df&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject" } ], "_usage": { "input_tokens": 62, "output_tokens": 812, "inference_time_tokens": 3462, "total_tokens": 4336 } }
Generated in

Run time and cost

This model runs on CPU hardware. We don't yet have enough runs of this model to provide performance information.

Readme

🎯 JigsawStack Object Detection – Replicate Wrapper

This model wraps the JigsawStack Object Detection API

This model wraps the JigsawStack Speech-to-Text API and leverages the powerful Whisper V3 model to transcribe and optionally translate audio/video files.

Detect and highlight objects in images with high accuracy using JigsawStack’s Object Detection API. This model on Replicate supports generic detection, prompt-based targeting, and optional annotated image output — all powered by a fast and scalable vision backend.


🧠 What It Does

You provide an image (via URL or file storage key), and the model returns: - Detected objects with labels and coordinates - Optionally, an annotated image - Support for prompt-guided detection (e.g., only detect “cat” or “helmet”)


🔑 Inputs

Name Type Required Description
url string ❌ No Public URL to an image file
file_store_key string ❌ No Key of an image stored on JigsawStack File Storage
prompts list of strings ❌ No Optional array of prompts (e.g. ["dog", "car"]) for targeted detection
features list of enums ❌ No Features to enable. Options: object_detection, gui. At least one required
annotated_image boolean ❌ No If true, returns image with bounding boxes drawn
return_type string ❌ No url or base64 image format (default: url)
api_key string ✅ Yes Your JigsawStack API key

📌 You must provide either url or file_store_key, not both.