pwntus
/
sdxl-gta-v
A fine-tuned SDXL based on GTA V art
- Public
- 64.3K runs
-
L40S
Prediction
pwntus/sdxl-gta-v:326cf15fID3urvpidbpn46rniq5q5t5a2dsuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- video game art, in the style of TOK, one man in a suit, on a luxury yacht
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.8
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- guns
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury yacht", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pwntus/sdxl-gta-v:326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", { input: { width: 1024, height: 1024, prompt: "video game art, in the style of TOK, one man in a suit, on a luxury yacht", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.8, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "guns", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pwntus/sdxl-gta-v:326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", input={ "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury yacht", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", "input": { "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury yacht", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-09T14:13:20.714868Z", "created_at": "2023-08-09T14:13:10.096992Z", "data_removed": false, "error": null, "id": "3urvpidbpn46rniq5q5t5a2dsu", "input": { "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury yacht", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 56434\nPrompt: video game art, in the style of <s0><s1>, one man in a suit, on a luxury yacht\ntxt2img mode\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:07, 3.67it/s]\n 7%|▋ | 2/30 [00:00<00:07, 3.66it/s]\n 10%|█ | 3/30 [00:00<00:07, 3.66it/s]\n 13%|█▎ | 4/30 [00:01<00:07, 3.66it/s]\n 17%|█▋ | 5/30 [00:01<00:06, 3.66it/s]\n 20%|██ | 6/30 [00:01<00:06, 3.66it/s]\n 23%|██▎ | 7/30 [00:01<00:06, 3.66it/s]\n 27%|██▋ | 8/30 [00:02<00:06, 3.66it/s]\n 30%|███ | 9/30 [00:02<00:05, 3.66it/s]\n 33%|███▎ | 10/30 [00:02<00:05, 3.66it/s]\n 37%|███▋ | 11/30 [00:03<00:05, 3.66it/s]\n 40%|████ | 12/30 [00:03<00:04, 3.66it/s]\n 43%|████▎ | 13/30 [00:03<00:04, 3.66it/s]\n 47%|████▋ | 14/30 [00:03<00:04, 3.66it/s]\n 50%|█████ | 15/30 [00:04<00:04, 3.66it/s]\n 53%|█████▎ | 16/30 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 17/30 [00:04<00:03, 3.66it/s]\n 60%|██████ | 18/30 [00:04<00:03, 3.66it/s]\n 63%|██████▎ | 19/30 [00:05<00:03, 3.66it/s]\n 67%|██████▋ | 20/30 [00:05<00:02, 3.66it/s]\n 70%|███████ | 21/30 [00:05<00:02, 3.66it/s]\n 73%|███████▎ | 22/30 [00:06<00:02, 3.66it/s]\n 77%|███████▋ | 23/30 [00:06<00:01, 3.65it/s]\n 80%|████████ | 24/30 [00:06<00:01, 3.65it/s]\n 83%|████████▎ | 25/30 [00:06<00:01, 3.65it/s]\n 87%|████████▋ | 26/30 [00:07<00:01, 3.65it/s]\n 90%|█████████ | 27/30 [00:07<00:00, 3.65it/s]\n 93%|█████████▎| 28/30 [00:07<00:00, 3.65it/s]\n 97%|█████████▋| 29/30 [00:07<00:00, 3.65it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.65it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.66it/s]", "metrics": { "predict_time": 10.624371, "total_time": 10.617876 }, "output": [ "https://replicate.delivery/pbxt/YE9wXAGTU3ZuOdFH2pM6Wzuawe9hGs9wWswshYULRU7fDVYRA/out-0.png" ], "started_at": "2023-08-09T14:13:10.090497Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3urvpidbpn46rniq5q5t5a2dsu", "cancel": "https://api.replicate.com/v1/predictions/3urvpidbpn46rniq5q5t5a2dsu/cancel" }, "version": "b61a50b07f8316aab4a10253692511dd2f0b6f8546113c314a0e0940dc372614" }
Generated inUsing seed: 56434 Prompt: video game art, in the style of <s0><s1>, one man in a suit, on a luxury yacht txt2img mode 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:07, 3.67it/s] 7%|▋ | 2/30 [00:00<00:07, 3.66it/s] 10%|█ | 3/30 [00:00<00:07, 3.66it/s] 13%|█▎ | 4/30 [00:01<00:07, 3.66it/s] 17%|█▋ | 5/30 [00:01<00:06, 3.66it/s] 20%|██ | 6/30 [00:01<00:06, 3.66it/s] 23%|██▎ | 7/30 [00:01<00:06, 3.66it/s] 27%|██▋ | 8/30 [00:02<00:06, 3.66it/s] 30%|███ | 9/30 [00:02<00:05, 3.66it/s] 33%|███▎ | 10/30 [00:02<00:05, 3.66it/s] 37%|███▋ | 11/30 [00:03<00:05, 3.66it/s] 40%|████ | 12/30 [00:03<00:04, 3.66it/s] 43%|████▎ | 13/30 [00:03<00:04, 3.66it/s] 47%|████▋ | 14/30 [00:03<00:04, 3.66it/s] 50%|█████ | 15/30 [00:04<00:04, 3.66it/s] 53%|█████▎ | 16/30 [00:04<00:03, 3.66it/s] 57%|█████▋ | 17/30 [00:04<00:03, 3.66it/s] 60%|██████ | 18/30 [00:04<00:03, 3.66it/s] 63%|██████▎ | 19/30 [00:05<00:03, 3.66it/s] 67%|██████▋ | 20/30 [00:05<00:02, 3.66it/s] 70%|███████ | 21/30 [00:05<00:02, 3.66it/s] 73%|███████▎ | 22/30 [00:06<00:02, 3.66it/s] 77%|███████▋ | 23/30 [00:06<00:01, 3.65it/s] 80%|████████ | 24/30 [00:06<00:01, 3.65it/s] 83%|████████▎ | 25/30 [00:06<00:01, 3.65it/s] 87%|████████▋ | 26/30 [00:07<00:01, 3.65it/s] 90%|█████████ | 27/30 [00:07<00:00, 3.65it/s] 93%|█████████▎| 28/30 [00:07<00:00, 3.65it/s] 97%|█████████▋| 29/30 [00:07<00:00, 3.65it/s] 100%|██████████| 30/30 [00:08<00:00, 3.65it/s] 100%|██████████| 30/30 [00:08<00:00, 3.66it/s]
Prediction
pwntus/sdxl-gta-v:326cf15fIDst4x5gdbdnqdv5j7jqzzk7rju4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @pwntusInput
- width
- 1024
- height
- 1024
- prompt
- video game art in the style of TOK, Queen Elizabeth, in Los Angeles
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.75
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- guns
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "video game art in the style of TOK, Queen Elizabeth, in Los Angeles", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pwntus/sdxl-gta-v:326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", { input: { width: 1024, height: 1024, prompt: "video game art in the style of TOK, Queen Elizabeth, in Los Angeles", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.75, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "guns", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pwntus/sdxl-gta-v:326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", input={ "width": 1024, "height": 1024, "prompt": "video game art in the style of TOK, Queen Elizabeth, in Los Angeles", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", "input": { "width": 1024, "height": 1024, "prompt": "video game art in the style of TOK, Queen Elizabeth, in Los Angeles", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-09T14:09:14.161735Z", "created_at": "2023-08-09T14:09:04.005121Z", "data_removed": false, "error": null, "id": "st4x5gdbdnqdv5j7jqzzk7rju4", "input": { "width": 1024, "height": 1024, "prompt": "video game art in the style of TOK, Queen Elizabeth, in Los Angeles", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 7343\nPrompt: video game art in the style of <s0><s1>, Queen Elizabeth, in Los Angeles\ntxt2img mode\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:05, 3.69it/s]\n 9%|▊ | 2/23 [00:00<00:05, 3.67it/s]\n 13%|█▎ | 3/23 [00:00<00:05, 3.66it/s]\n 17%|█▋ | 4/23 [00:01<00:05, 3.66it/s]\n 22%|██▏ | 5/23 [00:01<00:04, 3.66it/s]\n 26%|██▌ | 6/23 [00:01<00:04, 3.66it/s]\n 30%|███ | 7/23 [00:01<00:04, 3.65it/s]\n 35%|███▍ | 8/23 [00:02<00:04, 3.65it/s]\n 39%|███▉ | 9/23 [00:02<00:03, 3.65it/s]\n 43%|████▎ | 10/23 [00:02<00:03, 3.65it/s]\n 48%|████▊ | 11/23 [00:03<00:03, 3.65it/s]\n 52%|█████▏ | 12/23 [00:03<00:03, 3.65it/s]\n 57%|█████▋ | 13/23 [00:03<00:02, 3.65it/s]\n 61%|██████ | 14/23 [00:03<00:02, 3.64it/s]\n 65%|██████▌ | 15/23 [00:04<00:02, 3.64it/s]\n 70%|██████▉ | 16/23 [00:04<00:01, 3.64it/s]\n 74%|███████▍ | 17/23 [00:04<00:01, 3.64it/s]\n 78%|███████▊ | 18/23 [00:04<00:01, 3.64it/s]\n 83%|████████▎ | 19/23 [00:05<00:01, 3.64it/s]\n 87%|████████▋ | 20/23 [00:05<00:00, 3.64it/s]\n 91%|█████████▏| 21/23 [00:05<00:00, 3.64it/s]\n 96%|█████████▌| 22/23 [00:06<00:00, 3.64it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.64it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.65it/s]\n 0%| | 0/7 [00:00<?, ?it/s]\n 14%|█▍ | 1/7 [00:00<00:01, 4.30it/s]\n 29%|██▊ | 2/7 [00:00<00:01, 4.29it/s]\n 43%|████▎ | 3/7 [00:00<00:00, 4.27it/s]\n 57%|█████▋ | 4/7 [00:00<00:00, 4.27it/s]\n 71%|███████▏ | 5/7 [00:01<00:00, 4.26it/s]\n 86%|████████▌ | 6/7 [00:01<00:00, 4.26it/s]\n100%|██████████| 7/7 [00:01<00:00, 4.26it/s]\n100%|██████████| 7/7 [00:01<00:00, 4.27it/s]", "metrics": { "predict_time": 10.149148, "total_time": 10.156614 }, "output": [ "https://replicate.delivery/pbxt/pGdrdZe0jx3RNK7vjgIp4lycKX7TG43HzcDYehA6O8BJAVYRA/out-0.png" ], "started_at": "2023-08-09T14:09:04.012587Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/st4x5gdbdnqdv5j7jqzzk7rju4", "cancel": "https://api.replicate.com/v1/predictions/st4x5gdbdnqdv5j7jqzzk7rju4/cancel" }, "version": "b61a50b07f8316aab4a10253692511dd2f0b6f8546113c314a0e0940dc372614" }
Generated inUsing seed: 7343 Prompt: video game art in the style of <s0><s1>, Queen Elizabeth, in Los Angeles txt2img mode 0%| | 0/23 [00:00<?, ?it/s] 4%|▍ | 1/23 [00:00<00:05, 3.69it/s] 9%|▊ | 2/23 [00:00<00:05, 3.67it/s] 13%|█▎ | 3/23 [00:00<00:05, 3.66it/s] 17%|█▋ | 4/23 [00:01<00:05, 3.66it/s] 22%|██▏ | 5/23 [00:01<00:04, 3.66it/s] 26%|██▌ | 6/23 [00:01<00:04, 3.66it/s] 30%|███ | 7/23 [00:01<00:04, 3.65it/s] 35%|███▍ | 8/23 [00:02<00:04, 3.65it/s] 39%|███▉ | 9/23 [00:02<00:03, 3.65it/s] 43%|████▎ | 10/23 [00:02<00:03, 3.65it/s] 48%|████▊ | 11/23 [00:03<00:03, 3.65it/s] 52%|█████▏ | 12/23 [00:03<00:03, 3.65it/s] 57%|█████▋ | 13/23 [00:03<00:02, 3.65it/s] 61%|██████ | 14/23 [00:03<00:02, 3.64it/s] 65%|██████▌ | 15/23 [00:04<00:02, 3.64it/s] 70%|██████▉ | 16/23 [00:04<00:01, 3.64it/s] 74%|███████▍ | 17/23 [00:04<00:01, 3.64it/s] 78%|███████▊ | 18/23 [00:04<00:01, 3.64it/s] 83%|████████▎ | 19/23 [00:05<00:01, 3.64it/s] 87%|████████▋ | 20/23 [00:05<00:00, 3.64it/s] 91%|█████████▏| 21/23 [00:05<00:00, 3.64it/s] 96%|█████████▌| 22/23 [00:06<00:00, 3.64it/s] 100%|██████████| 23/23 [00:06<00:00, 3.64it/s] 100%|██████████| 23/23 [00:06<00:00, 3.65it/s] 0%| | 0/7 [00:00<?, ?it/s] 14%|█▍ | 1/7 [00:00<00:01, 4.30it/s] 29%|██▊ | 2/7 [00:00<00:01, 4.29it/s] 43%|████▎ | 3/7 [00:00<00:00, 4.27it/s] 57%|█████▋ | 4/7 [00:00<00:00, 4.27it/s] 71%|███████▏ | 5/7 [00:01<00:00, 4.26it/s] 86%|████████▌ | 6/7 [00:01<00:00, 4.26it/s] 100%|██████████| 7/7 [00:01<00:00, 4.26it/s] 100%|██████████| 7/7 [00:01<00:00, 4.27it/s]
Prediction
pwntus/sdxl-gta-v:326cf15fIDumxziitbfprvmoh4srbcm3y6wyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- video game art, in the style of TOK, one man in a suit, on a luxury plane
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- guns
- prompt_strength
- 0.8
- num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury plane", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pwntus/sdxl-gta-v:326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", { input: { width: 1024, height: 1024, prompt: "video game art, in the style of TOK, one man in a suit, on a luxury plane", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.9, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "guns", prompt_strength: 0.8, num_inference_steps: 30 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pwntus/sdxl-gta-v:326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", input={ "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury plane", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "326cf15ffffc4e2b157d0a1974891cd7893f4542b508be349f3c115412506c5e", "input": { "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury plane", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-09T15:32:05.609313Z", "created_at": "2023-08-09T15:30:54.706871Z", "data_removed": false, "error": null, "id": "umxziitbfprvmoh4srbcm3y6wy", "input": { "width": 1024, "height": 1024, "prompt": "video game art, in the style of TOK, one man in a suit, on a luxury plane", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "guns", "prompt_strength": 0.8, "num_inference_steps": 30 }, "logs": "Using seed: 53294\nPrompt: video game art, in the style of <s0><s1>, one man in a suit, on a luxury plane\ntxt2img mode\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:23, 1.25it/s]\n 7%|▋ | 2/30 [00:01<00:13, 2.04it/s]\n 10%|█ | 3/30 [00:01<00:10, 2.56it/s]\n 13%|█▎ | 4/30 [00:01<00:08, 2.90it/s]\n 17%|█▋ | 5/30 [00:01<00:07, 3.13it/s]\n 20%|██ | 6/30 [00:02<00:07, 3.30it/s]\n 23%|██▎ | 7/30 [00:02<00:06, 3.41it/s]\n 27%|██▋ | 8/30 [00:02<00:06, 3.48it/s]\n 30%|███ | 9/30 [00:02<00:05, 3.53it/s]\n 33%|███▎ | 10/30 [00:03<00:05, 3.57it/s]\n 37%|███▋ | 11/30 [00:03<00:05, 3.59it/s]\n 40%|████ | 12/30 [00:03<00:04, 3.61it/s]\n 43%|████▎ | 13/30 [00:04<00:04, 3.62it/s]\n 47%|████▋ | 14/30 [00:04<00:04, 3.63it/s]\n 50%|█████ | 15/30 [00:04<00:04, 3.64it/s]\n 53%|█████▎ | 16/30 [00:04<00:03, 3.64it/s]\n 57%|█████▋ | 17/30 [00:05<00:03, 3.64it/s]\n 60%|██████ | 18/30 [00:05<00:03, 3.64it/s]\n 63%|██████▎ | 19/30 [00:05<00:03, 3.65it/s]\n 67%|██████▋ | 20/30 [00:06<00:02, 3.65it/s]\n 70%|███████ | 21/30 [00:06<00:02, 3.65it/s]\n 73%|███████▎ | 22/30 [00:06<00:02, 3.66it/s]\n 77%|███████▋ | 23/30 [00:06<00:01, 3.66it/s]\n 80%|████████ | 24/30 [00:07<00:01, 3.66it/s]\n 83%|████████▎ | 25/30 [00:07<00:01, 3.66it/s]\n 87%|████████▋ | 26/30 [00:07<00:01, 3.67it/s]\n 90%|█████████ | 27/30 [00:07<00:00, 3.66it/s]\n 93%|█████████▎| 28/30 [00:08<00:00, 3.66it/s]\n 97%|█████████▋| 29/30 [00:08<00:00, 3.66it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.67it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.44it/s]", "metrics": { "predict_time": 11.362376, "total_time": 70.902442 }, "output": [ "https://replicate.delivery/pbxt/ajoXMQGVYapLMRpkWqWmcgcOLcCbt1JjKBEwIFBAzNAdjFWE/out-0.png" ], "started_at": "2023-08-09T15:31:54.246937Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/umxziitbfprvmoh4srbcm3y6wy", "cancel": "https://api.replicate.com/v1/predictions/umxziitbfprvmoh4srbcm3y6wy/cancel" }, "version": "b61a50b07f8316aab4a10253692511dd2f0b6f8546113c314a0e0940dc372614" }
Generated inUsing seed: 53294 Prompt: video game art, in the style of <s0><s1>, one man in a suit, on a luxury plane txt2img mode 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:23, 1.25it/s] 7%|▋ | 2/30 [00:01<00:13, 2.04it/s] 10%|█ | 3/30 [00:01<00:10, 2.56it/s] 13%|█▎ | 4/30 [00:01<00:08, 2.90it/s] 17%|█▋ | 5/30 [00:01<00:07, 3.13it/s] 20%|██ | 6/30 [00:02<00:07, 3.30it/s] 23%|██▎ | 7/30 [00:02<00:06, 3.41it/s] 27%|██▋ | 8/30 [00:02<00:06, 3.48it/s] 30%|███ | 9/30 [00:02<00:05, 3.53it/s] 33%|███▎ | 10/30 [00:03<00:05, 3.57it/s] 37%|███▋ | 11/30 [00:03<00:05, 3.59it/s] 40%|████ | 12/30 [00:03<00:04, 3.61it/s] 43%|████▎ | 13/30 [00:04<00:04, 3.62it/s] 47%|████▋ | 14/30 [00:04<00:04, 3.63it/s] 50%|█████ | 15/30 [00:04<00:04, 3.64it/s] 53%|█████▎ | 16/30 [00:04<00:03, 3.64it/s] 57%|█████▋ | 17/30 [00:05<00:03, 3.64it/s] 60%|██████ | 18/30 [00:05<00:03, 3.64it/s] 63%|██████▎ | 19/30 [00:05<00:03, 3.65it/s] 67%|██████▋ | 20/30 [00:06<00:02, 3.65it/s] 70%|███████ | 21/30 [00:06<00:02, 3.65it/s] 73%|███████▎ | 22/30 [00:06<00:02, 3.66it/s] 77%|███████▋ | 23/30 [00:06<00:01, 3.66it/s] 80%|████████ | 24/30 [00:07<00:01, 3.66it/s] 83%|████████▎ | 25/30 [00:07<00:01, 3.66it/s] 87%|████████▋ | 26/30 [00:07<00:01, 3.67it/s] 90%|█████████ | 27/30 [00:07<00:00, 3.66it/s] 93%|█████████▎| 28/30 [00:08<00:00, 3.66it/s] 97%|█████████▋| 29/30 [00:08<00:00, 3.66it/s] 100%|██████████| 30/30 [00:08<00:00, 3.67it/s] 100%|██████████| 30/30 [00:08<00:00, 3.44it/s]
Want to make some of these yourself?
Run this model