Readme
…
Model description
…
Intended use
…
Ethical considerations
…
Caveats and recommendations
…
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run tstramer/ghibli-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"tstramer/ghibli-diffusion:b76aa203ed8b55a2bd69bacdab46b48b981984181476570b7ba75699ae286025",
{
input: {
width: 512,
height: 512,
prompt: "ghibli style elf",
scheduler: "K-LMS",
num_outputs: 1,
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 150
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run tstramer/ghibli-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"tstramer/ghibli-diffusion:b76aa203ed8b55a2bd69bacdab46b48b981984181476570b7ba75699ae286025",
input={
"width": 512,
"height": 512,
"prompt": "ghibli style elf",
"scheduler": "K-LMS",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 150
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tstramer/ghibli-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "b76aa203ed8b55a2bd69bacdab46b48b981984181476570b7ba75699ae286025",
"input": {
"width": 512,
"height": 512,
"prompt": "ghibli style elf",
"scheduler": "K-LMS",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 150
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tstramer/ghibli-diffusion@sha256:b76aa203ed8b55a2bd69bacdab46b48b981984181476570b7ba75699ae286025 \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="ghibli style elf"' \
-i 'scheduler="K-LMS"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=150'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tstramer/ghibli-diffusion@sha256:b76aa203ed8b55a2bd69bacdab46b48b981984181476570b7ba75699ae286025
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "ghibli style elf", "scheduler": "K-LMS", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 150 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.16. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2022-11-22T02:40:27.132264Z",
"created_at": "2022-11-22T02:40:15.884998Z",
"data_removed": false,
"error": null,
"id": "vuj42xsehbgcbld4gdy7o5754m",
"input": {
"width": 512,
"height": 512,
"prompt": "ghibli style elf",
"scheduler": "K-LMS",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": "150"
},
"logs": "Using seed: 14453\n 0%| | 0/150 [00:00<?, ?it/s]\n 1%|▏ | 2/150 [00:00<00:11, 13.36it/s]\n 3%|▎ | 4/150 [00:00<00:10, 13.77it/s]\n 4%|▍ | 6/150 [00:00<00:10, 13.96it/s]\n 5%|▌ | 8/150 [00:00<00:10, 13.47it/s]\n 7%|▋ | 10/150 [00:00<00:10, 13.69it/s]\n 8%|▊ | 12/150 [00:00<00:09, 13.91it/s]\n 9%|▉ | 14/150 [00:01<00:09, 13.96it/s]\n 11%|█ | 16/150 [00:01<00:09, 13.98it/s]\n 12%|█▏ | 18/150 [00:01<00:09, 14.10it/s]\n 13%|█▎ | 20/150 [00:01<00:09, 14.09it/s]\n 15%|█▍ | 22/150 [00:01<00:09, 14.07it/s]\n 16%|█▌ | 24/150 [00:01<00:09, 13.97it/s]\n 17%|█▋ | 26/150 [00:01<00:08, 14.00it/s]\n 19%|█▊ | 28/150 [00:02<00:08, 14.02it/s]\n 20%|██ | 30/150 [00:02<00:08, 13.99it/s]\n 21%|██▏ | 32/150 [00:02<00:08, 14.00it/s]\n 23%|██▎ | 34/150 [00:02<00:08, 14.05it/s]\n 24%|██▍ | 36/150 [00:02<00:08, 14.07it/s]\n 25%|██▌ | 38/150 [00:02<00:08, 13.94it/s]\n 27%|██▋ | 40/150 [00:02<00:07, 14.00it/s]\n 28%|██▊ | 42/150 [00:03<00:07, 14.06it/s]\n 29%|██▉ | 44/150 [00:03<00:07, 14.12it/s]\n 31%|███ | 46/150 [00:03<00:07, 14.21it/s]\n 32%|███▏ | 48/150 [00:03<00:07, 14.30it/s]\n 33%|███▎ | 50/150 [00:03<00:06, 14.35it/s]\n 35%|███▍ | 52/150 [00:03<00:06, 14.24it/s]\n 36%|███▌ | 54/150 [00:03<00:06, 14.22it/s]\n 37%|███▋ | 56/150 [00:03<00:06, 14.20it/s]\n 39%|███▊ | 58/150 [00:04<00:06, 14.22it/s]\n 40%|████ | 60/150 [00:04<00:06, 14.25it/s]\n 41%|████▏ | 62/150 [00:04<00:06, 14.29it/s]\n 43%|████▎ | 64/150 [00:04<00:06, 14.26it/s]\n 44%|████▍ | 66/150 [00:04<00:06, 13.95it/s]\n 45%|████▌ | 68/150 [00:04<00:05, 13.86it/s]\n 47%|████▋ | 70/150 [00:04<00:05, 13.90it/s]\n 48%|████▊ | 72/150 [00:05<00:05, 14.06it/s]\n 49%|████▉ | 74/150 [00:05<00:05, 14.16it/s]\n 51%|█████ | 76/150 [00:05<00:05, 14.25it/s]\n 52%|█████▏ | 78/150 [00:05<00:05, 14.29it/s]\n 53%|█████▎ | 80/150 [00:05<00:04, 14.05it/s]\n 55%|█████▍ | 82/150 [00:05<00:04, 14.08it/s]\n 56%|█████▌ | 84/150 [00:05<00:04, 14.07it/s]\n 57%|█████▋ | 86/150 [00:06<00:04, 14.10it/s]\n 59%|█████▊ | 88/150 [00:06<00:04, 14.13it/s]\n 60%|██████ | 90/150 [00:06<00:04, 14.14it/s]\n 61%|██████▏ | 92/150 [00:06<00:04, 14.11it/s]\n 63%|██████▎ | 94/150 [00:06<00:04, 13.90it/s]\n 64%|██████▍ | 96/150 [00:06<00:03, 13.96it/s]\n 65%|██████▌ | 98/150 [00:06<00:03, 13.99it/s]\n 67%|██████▋ | 100/150 [00:07<00:03, 13.99it/s]\n 68%|██████▊ | 102/150 [00:07<00:03, 14.00it/s]\n 69%|██████▉ | 104/150 [00:07<00:03, 14.01it/s]\n 71%|███████ | 106/150 [00:07<00:03, 13.96it/s]\n 72%|███████▏ | 108/150 [00:07<00:03, 13.82it/s]\n 73%|███████▎ | 110/150 [00:07<00:02, 13.90it/s]\n 75%|███████▍ | 112/150 [00:07<00:02, 13.99it/s]\n 76%|███████▌ | 114/150 [00:08<00:02, 14.04it/s]\n 77%|███████▋ | 116/150 [00:08<00:02, 14.01it/s]\n 79%|███████▊ | 118/150 [00:08<00:02, 14.05it/s]\n 80%|████████ | 120/150 [00:08<00:02, 13.95it/s]\n 81%|████████▏ | 122/150 [00:08<00:02, 13.89it/s]\n 83%|████████▎ | 124/150 [00:08<00:01, 13.93it/s]\n 84%|████████▍ | 126/150 [00:08<00:01, 13.96it/s]\n 85%|████████▌ | 128/150 [00:09<00:01, 13.95it/s]\n 87%|████████▋ | 130/150 [00:09<00:01, 14.02it/s]\n 88%|████████▊ | 132/150 [00:09<00:01, 14.00it/s]\n 89%|████████▉ | 134/150 [00:09<00:01, 14.01it/s]\n 91%|█████████ | 136/150 [00:09<00:01, 13.88it/s]\n 92%|█████████▏| 138/150 [00:09<00:00, 13.77it/s]\n 93%|█████████▎| 140/150 [00:09<00:00, 13.72it/s]\n 95%|█████████▍| 142/150 [00:10<00:00, 13.74it/s]\n 96%|█████████▌| 144/150 [00:10<00:00, 13.76it/s]\n 97%|█████████▋| 146/150 [00:10<00:00, 13.79it/s]\n 99%|█████████▊| 148/150 [00:10<00:00, 13.81it/s]\n100%|██████████| 150/150 [00:10<00:00, 13.62it/s]\n100%|██████████| 150/150 [00:10<00:00, 13.99it/s]",
"metrics": {
"predict_time": 11.211884,
"total_time": 11.247266
},
"output": [
"https://replicate.delivery/pbxt/EBBNVwxeuQwQZKbuecO6mMgSQ11l1D715fvMrEra3A50E9EgA/out-0.png"
],
"started_at": "2022-11-22T02:40:15.920380Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/vuj42xsehbgcbld4gdy7o5754m",
"cancel": "https://api.replicate.com/v1/predictions/vuj42xsehbgcbld4gdy7o5754m/cancel"
},
"version": "b190224e487827d5fdeb8bf8bcdaa71c41b09a152f175de9f170aa0e088f66e9"
}
Using seed: 14453
0%| | 0/150 [00:00<?, ?it/s]
1%|▏ | 2/150 [00:00<00:11, 13.36it/s]
3%|▎ | 4/150 [00:00<00:10, 13.77it/s]
4%|▍ | 6/150 [00:00<00:10, 13.96it/s]
5%|▌ | 8/150 [00:00<00:10, 13.47it/s]
7%|▋ | 10/150 [00:00<00:10, 13.69it/s]
8%|▊ | 12/150 [00:00<00:09, 13.91it/s]
9%|▉ | 14/150 [00:01<00:09, 13.96it/s]
11%|█ | 16/150 [00:01<00:09, 13.98it/s]
12%|█▏ | 18/150 [00:01<00:09, 14.10it/s]
13%|█▎ | 20/150 [00:01<00:09, 14.09it/s]
15%|█▍ | 22/150 [00:01<00:09, 14.07it/s]
16%|█▌ | 24/150 [00:01<00:09, 13.97it/s]
17%|█▋ | 26/150 [00:01<00:08, 14.00it/s]
19%|█▊ | 28/150 [00:02<00:08, 14.02it/s]
20%|██ | 30/150 [00:02<00:08, 13.99it/s]
21%|██▏ | 32/150 [00:02<00:08, 14.00it/s]
23%|██▎ | 34/150 [00:02<00:08, 14.05it/s]
24%|██▍ | 36/150 [00:02<00:08, 14.07it/s]
25%|██▌ | 38/150 [00:02<00:08, 13.94it/s]
27%|██▋ | 40/150 [00:02<00:07, 14.00it/s]
28%|██▊ | 42/150 [00:03<00:07, 14.06it/s]
29%|██▉ | 44/150 [00:03<00:07, 14.12it/s]
31%|███ | 46/150 [00:03<00:07, 14.21it/s]
32%|███▏ | 48/150 [00:03<00:07, 14.30it/s]
33%|███▎ | 50/150 [00:03<00:06, 14.35it/s]
35%|███▍ | 52/150 [00:03<00:06, 14.24it/s]
36%|███▌ | 54/150 [00:03<00:06, 14.22it/s]
37%|███▋ | 56/150 [00:03<00:06, 14.20it/s]
39%|███▊ | 58/150 [00:04<00:06, 14.22it/s]
40%|████ | 60/150 [00:04<00:06, 14.25it/s]
41%|████▏ | 62/150 [00:04<00:06, 14.29it/s]
43%|████▎ | 64/150 [00:04<00:06, 14.26it/s]
44%|████▍ | 66/150 [00:04<00:06, 13.95it/s]
45%|████▌ | 68/150 [00:04<00:05, 13.86it/s]
47%|████▋ | 70/150 [00:04<00:05, 13.90it/s]
48%|████▊ | 72/150 [00:05<00:05, 14.06it/s]
49%|████▉ | 74/150 [00:05<00:05, 14.16it/s]
51%|█████ | 76/150 [00:05<00:05, 14.25it/s]
52%|█████▏ | 78/150 [00:05<00:05, 14.29it/s]
53%|█████▎ | 80/150 [00:05<00:04, 14.05it/s]
55%|█████▍ | 82/150 [00:05<00:04, 14.08it/s]
56%|█████▌ | 84/150 [00:05<00:04, 14.07it/s]
57%|█████▋ | 86/150 [00:06<00:04, 14.10it/s]
59%|█████▊ | 88/150 [00:06<00:04, 14.13it/s]
60%|██████ | 90/150 [00:06<00:04, 14.14it/s]
61%|██████▏ | 92/150 [00:06<00:04, 14.11it/s]
63%|██████▎ | 94/150 [00:06<00:04, 13.90it/s]
64%|██████▍ | 96/150 [00:06<00:03, 13.96it/s]
65%|██████▌ | 98/150 [00:06<00:03, 13.99it/s]
67%|██████▋ | 100/150 [00:07<00:03, 13.99it/s]
68%|██████▊ | 102/150 [00:07<00:03, 14.00it/s]
69%|██████▉ | 104/150 [00:07<00:03, 14.01it/s]
71%|███████ | 106/150 [00:07<00:03, 13.96it/s]
72%|███████▏ | 108/150 [00:07<00:03, 13.82it/s]
73%|███████▎ | 110/150 [00:07<00:02, 13.90it/s]
75%|███████▍ | 112/150 [00:07<00:02, 13.99it/s]
76%|███████▌ | 114/150 [00:08<00:02, 14.04it/s]
77%|███████▋ | 116/150 [00:08<00:02, 14.01it/s]
79%|███████▊ | 118/150 [00:08<00:02, 14.05it/s]
80%|████████ | 120/150 [00:08<00:02, 13.95it/s]
81%|████████▏ | 122/150 [00:08<00:02, 13.89it/s]
83%|████████▎ | 124/150 [00:08<00:01, 13.93it/s]
84%|████████▍ | 126/150 [00:08<00:01, 13.96it/s]
85%|████████▌ | 128/150 [00:09<00:01, 13.95it/s]
87%|████████▋ | 130/150 [00:09<00:01, 14.02it/s]
88%|████████▊ | 132/150 [00:09<00:01, 14.00it/s]
89%|████████▉ | 134/150 [00:09<00:01, 14.01it/s]
91%|█████████ | 136/150 [00:09<00:01, 13.88it/s]
92%|█████████▏| 138/150 [00:09<00:00, 13.77it/s]
93%|█████████▎| 140/150 [00:09<00:00, 13.72it/s]
95%|█████████▍| 142/150 [00:10<00:00, 13.74it/s]
96%|█████████▌| 144/150 [00:10<00:00, 13.76it/s]
97%|█████████▋| 146/150 [00:10<00:00, 13.79it/s]
99%|█████████▊| 148/150 [00:10<00:00, 13.81it/s]
100%|██████████| 150/150 [00:10<00:00, 13.62it/s]
100%|██████████| 150/150 [00:10<00:00, 13.99it/s]
This example was created by a different version, tstramer/ghibli-diffusion:b190224e.
This model costs approximately $0.16 to run on Replicate, or 6 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia A100 (80GB) GPU hardware. Predictions typically complete within 115 seconds. The predict time for this model varies significantly based on the inputs.
…
…
…
…
…
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Using seed: 14453
0%| | 0/150 [00:00<?, ?it/s]
1%|▏ | 2/150 [00:00<00:11, 13.36it/s]
3%|▎ | 4/150 [00:00<00:10, 13.77it/s]
4%|▍ | 6/150 [00:00<00:10, 13.96it/s]
5%|▌ | 8/150 [00:00<00:10, 13.47it/s]
7%|▋ | 10/150 [00:00<00:10, 13.69it/s]
8%|▊ | 12/150 [00:00<00:09, 13.91it/s]
9%|▉ | 14/150 [00:01<00:09, 13.96it/s]
11%|█ | 16/150 [00:01<00:09, 13.98it/s]
12%|█▏ | 18/150 [00:01<00:09, 14.10it/s]
13%|█▎ | 20/150 [00:01<00:09, 14.09it/s]
15%|█▍ | 22/150 [00:01<00:09, 14.07it/s]
16%|█▌ | 24/150 [00:01<00:09, 13.97it/s]
17%|█▋ | 26/150 [00:01<00:08, 14.00it/s]
19%|█▊ | 28/150 [00:02<00:08, 14.02it/s]
20%|██ | 30/150 [00:02<00:08, 13.99it/s]
21%|██▏ | 32/150 [00:02<00:08, 14.00it/s]
23%|██▎ | 34/150 [00:02<00:08, 14.05it/s]
24%|██▍ | 36/150 [00:02<00:08, 14.07it/s]
25%|██▌ | 38/150 [00:02<00:08, 13.94it/s]
27%|██▋ | 40/150 [00:02<00:07, 14.00it/s]
28%|██▊ | 42/150 [00:03<00:07, 14.06it/s]
29%|██▉ | 44/150 [00:03<00:07, 14.12it/s]
31%|███ | 46/150 [00:03<00:07, 14.21it/s]
32%|███▏ | 48/150 [00:03<00:07, 14.30it/s]
33%|███▎ | 50/150 [00:03<00:06, 14.35it/s]
35%|███▍ | 52/150 [00:03<00:06, 14.24it/s]
36%|███▌ | 54/150 [00:03<00:06, 14.22it/s]
37%|███▋ | 56/150 [00:03<00:06, 14.20it/s]
39%|███▊ | 58/150 [00:04<00:06, 14.22it/s]
40%|████ | 60/150 [00:04<00:06, 14.25it/s]
41%|████▏ | 62/150 [00:04<00:06, 14.29it/s]
43%|████▎ | 64/150 [00:04<00:06, 14.26it/s]
44%|████▍ | 66/150 [00:04<00:06, 13.95it/s]
45%|████▌ | 68/150 [00:04<00:05, 13.86it/s]
47%|████▋ | 70/150 [00:04<00:05, 13.90it/s]
48%|████▊ | 72/150 [00:05<00:05, 14.06it/s]
49%|████▉ | 74/150 [00:05<00:05, 14.16it/s]
51%|█████ | 76/150 [00:05<00:05, 14.25it/s]
52%|█████▏ | 78/150 [00:05<00:05, 14.29it/s]
53%|█████▎ | 80/150 [00:05<00:04, 14.05it/s]
55%|█████▍ | 82/150 [00:05<00:04, 14.08it/s]
56%|█████▌ | 84/150 [00:05<00:04, 14.07it/s]
57%|█████▋ | 86/150 [00:06<00:04, 14.10it/s]
59%|█████▊ | 88/150 [00:06<00:04, 14.13it/s]
60%|██████ | 90/150 [00:06<00:04, 14.14it/s]
61%|██████▏ | 92/150 [00:06<00:04, 14.11it/s]
63%|██████▎ | 94/150 [00:06<00:04, 13.90it/s]
64%|██████▍ | 96/150 [00:06<00:03, 13.96it/s]
65%|██████▌ | 98/150 [00:06<00:03, 13.99it/s]
67%|██████▋ | 100/150 [00:07<00:03, 13.99it/s]
68%|██████▊ | 102/150 [00:07<00:03, 14.00it/s]
69%|██████▉ | 104/150 [00:07<00:03, 14.01it/s]
71%|███████ | 106/150 [00:07<00:03, 13.96it/s]
72%|███████▏ | 108/150 [00:07<00:03, 13.82it/s]
73%|███████▎ | 110/150 [00:07<00:02, 13.90it/s]
75%|███████▍ | 112/150 [00:07<00:02, 13.99it/s]
76%|███████▌ | 114/150 [00:08<00:02, 14.04it/s]
77%|███████▋ | 116/150 [00:08<00:02, 14.01it/s]
79%|███████▊ | 118/150 [00:08<00:02, 14.05it/s]
80%|████████ | 120/150 [00:08<00:02, 13.95it/s]
81%|████████▏ | 122/150 [00:08<00:02, 13.89it/s]
83%|████████▎ | 124/150 [00:08<00:01, 13.93it/s]
84%|████████▍ | 126/150 [00:08<00:01, 13.96it/s]
85%|████████▌ | 128/150 [00:09<00:01, 13.95it/s]
87%|████████▋ | 130/150 [00:09<00:01, 14.02it/s]
88%|████████▊ | 132/150 [00:09<00:01, 14.00it/s]
89%|████████▉ | 134/150 [00:09<00:01, 14.01it/s]
91%|█████████ | 136/150 [00:09<00:01, 13.88it/s]
92%|█████████▏| 138/150 [00:09<00:00, 13.77it/s]
93%|█████████▎| 140/150 [00:09<00:00, 13.72it/s]
95%|█████████▍| 142/150 [00:10<00:00, 13.74it/s]
96%|█████████▌| 144/150 [00:10<00:00, 13.76it/s]
97%|█████████▋| 146/150 [00:10<00:00, 13.79it/s]
99%|█████████▊| 148/150 [00:10<00:00, 13.81it/s]
100%|██████████| 150/150 [00:10<00:00, 13.62it/s]
100%|██████████| 150/150 [00:10<00:00, 13.99it/s]