adirik
/
marigold
Monocular depth estimation
Prediction
adirik/marigold:1a363593IDrwasfmdbcx25iw2kneyh67w2fyStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HlYnhvVI5IX35KJ6RkTTzoHwEDKL7KtAiPc4F4fDvcgJX3/pete-walls-92JRuvQZfKs-unsplash_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HlYnhvVI5IX35KJ6RkTTzoHwEDKL7KtAiPc4F4fDvcgJX3/pete-walls-92JRuvQZfKs-unsplash_crop43.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HlYnhvVI5IX35KJ6RkTTzoHwEDKL7KtAiPc4F4fDvcgJX3/pete-walls-92JRuvQZfKs-unsplash_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HlYnhvVI5IX35KJ6RkTTzoHwEDKL7KtAiPc4F4fDvcgJX3/pete-walls-92JRuvQZfKs-unsplash_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:24:45.085754Z", "created_at": "2023-12-15T08:24:30.867733Z", "data_removed": false, "error": null, "id": "rwasfmdbcx25iw2kneyh67w2fy", "input": { "image": "https://replicate.delivery/pbxt/K3HlYnhvVI5IX35KJ6RkTTzoHwEDKL7KtAiPc4F4fDvcgJX3/pete-walls-92JRuvQZfKs-unsplash_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:13, 1.55s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.14s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.01s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:04<00:04, 1.09it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.12it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.15it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.34s/it]", "metrics": { "predict_time": 14.178237, "total_time": 14.218021 }, "output": [ "https://replicate.delivery/pbxt/e3ADRhee5YRfZS3BD9DFNycivG5vNhNWtUCm2R6vrtMs0vJIB/depth_bw.png", "https://replicate.delivery/pbxt/9ZiEje1wIfiOaU7QdNbhOVH5fuFdPUSdY3dcwnaHfUdw0vJIB/depth_colored.png" ], "started_at": "2023-12-15T08:24:30.907517Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rwasfmdbcx25iw2kneyh67w2fy", "cancel": "https://api.replicate.com/v1/predictions/rwasfmdbcx25iw2kneyh67w2fy/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:13, 1.55s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.14s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.01s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s] denoising: 50%|█████ | 5/10 [00:04<00:04, 1.09it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.12it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.15it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.34s/it]
Prediction
adirik/marigold:1a363593ID7joi6b3bpm6yv3jqcxsspxjopiStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3Hm7yElxrTdGtqcO1QOFfOQgo7X2Dkkv4L4L8uU9MaJeeSM/dalle_3_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3Hm7yElxrTdGtqcO1QOFfOQgo7X2Dkkv4L4L8uU9MaJeeSM/dalle_3_crop43.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3Hm7yElxrTdGtqcO1QOFfOQgo7X2Dkkv4L4L8uU9MaJeeSM/dalle_3_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3Hm7yElxrTdGtqcO1QOFfOQgo7X2Dkkv4L4L8uU9MaJeeSM/dalle_3_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:25:20.932616Z", "created_at": "2023-12-15T08:25:06.398405Z", "data_removed": false, "error": null, "id": "7joi6b3bpm6yv3jqcxsspxjopi", "input": { "image": "https://replicate.delivery/pbxt/K3Hm7yElxrTdGtqcO1QOFfOQgo7X2Dkkv4L4L8uU9MaJeeSM/dalle_3_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.56s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.48s/it]", "metrics": { "predict_time": 14.495372, "total_time": 14.534211 }, "output": [ "https://replicate.delivery/pbxt/eN7yq3tkXfvoxkQ85vrORHPe76NXSHt0S4xuTmLefHLebfNBJA/depth_bw.png", "https://replicate.delivery/pbxt/CSay5c2p7RoaD9KZpn6moPlCDQHXDeau0rCCU3CnyxX4ebCSA/depth_colored.png" ], "started_at": "2023-12-15T08:25:06.437244Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7joi6b3bpm6yv3jqcxsspxjopi", "cancel": "https://api.replicate.com/v1/predictions/7joi6b3bpm6yv3jqcxsspxjopi/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.56s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.48s/it]
Prediction
adirik/marigold:1a363593IDgstmeitbpogjtwj7hqa5uwfpbmStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HoJ3Y9YuTPA4AphIw9azAo518qBjztAQGzEhYUx8cr64vP/Ticino_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HoJ3Y9YuTPA4AphIw9azAo518qBjztAQGzEhYUx8cr64vP/Ticino_crop43.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HoJ3Y9YuTPA4AphIw9azAo518qBjztAQGzEhYUx8cr64vP/Ticino_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HoJ3Y9YuTPA4AphIw9azAo518qBjztAQGzEhYUx8cr64vP/Ticino_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:27:39.501977Z", "created_at": "2023-12-15T08:27:25.399669Z", "data_removed": false, "error": null, "id": "gstmeitbpogjtwj7hqa5uwfpbm", "input": { "image": "https://replicate.delivery/pbxt/K3HoJ3Y9YuTPA4AphIw9azAo518qBjztAQGzEhYUx8cr64vP/Ticino_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:13, 1.52s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:08, 1.12s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:06, 1.00it/s]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.06it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:04<00:04, 1.10it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.13it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.14it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.15it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.16it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.16it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.24s/it]", "metrics": { "predict_time": 14.063309, "total_time": 14.102308 }, "output": [ "https://replicate.delivery/pbxt/FmtdwGsFxH6MHdSAFK2sXAQltkU1oaKSD3hBqRwQGYrefbCSA/depth_bw.png", "https://replicate.delivery/pbxt/6rTBCipOfBWvXyVTfduhHMUQds12VVIMT3C1XAMW0O47f3EkA/depth_colored.png" ], "started_at": "2023-12-15T08:27:25.438668Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gstmeitbpogjtwj7hqa5uwfpbm", "cancel": "https://api.replicate.com/v1/predictions/gstmeitbpogjtwj7hqa5uwfpbm/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:13, 1.52s/it] denoising: 20%|██ | 2/10 [00:02<00:08, 1.12s/it] denoising: 30%|███ | 3/10 [00:03<00:06, 1.00it/s] denoising: 40%|████ | 4/10 [00:04<00:05, 1.06it/s] denoising: 50%|█████ | 5/10 [00:04<00:04, 1.10it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.13it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.14it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.15it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.16it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.16it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.24s/it]
Prediction
adirik/marigold:1a363593IDcillxw3bb6x3zngakajlnusgreStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3Hn7u1rSVlRRjCXxGVjXU6zfIX09DW30uYjRtYapxR5YDiX/S-IC_engines_and_Von_Braun_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3Hn7u1rSVlRRjCXxGVjXU6zfIX09DW30uYjRtYapxR5YDiX/S-IC_engines_and_Von_Braun_crop43.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3Hn7u1rSVlRRjCXxGVjXU6zfIX09DW30uYjRtYapxR5YDiX/S-IC_engines_and_Von_Braun_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3Hn7u1rSVlRRjCXxGVjXU6zfIX09DW30uYjRtYapxR5YDiX/S-IC_engines_and_Von_Braun_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:26:24.116757Z", "created_at": "2023-12-15T08:26:09.583150Z", "data_removed": false, "error": null, "id": "cillxw3bb6x3zngakajlnusgre", "input": { "image": "https://replicate.delivery/pbxt/K3Hn7u1rSVlRRjCXxGVjXU6zfIX09DW30uYjRtYapxR5YDiX/S-IC_engines_and_Von_Braun_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.56s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.14s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:04<00:04, 1.09it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.34s/it]", "metrics": { "predict_time": 14.471544, "total_time": 14.533607 }, "output": [ "https://replicate.delivery/pbxt/rjEj4iCyigrPMh5yl1nQi3K7POuWJ8ez1QDe2ZofyXRd93EkA/depth_bw.png", "https://replicate.delivery/pbxt/WHkMnfiVHtW1DSflrBJBB1LtCT0q7hHMUNTaw22vBivve3EkA/depth_colored.png" ], "started_at": "2023-12-15T08:26:09.645213Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/cillxw3bb6x3zngakajlnusgre", "cancel": "https://api.replicate.com/v1/predictions/cillxw3bb6x3zngakajlnusgre/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.56s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.14s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s] denoising: 50%|█████ | 5/10 [00:04<00:04, 1.09it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.34s/it]
Prediction
adirik/marigold:1a363593IDzxctnwtbp2ke2qy53cxkl2ekv4StatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HorhanHXhZ8WeWpH1udCnnXe3UX1Olmp619RN3nHxNBBmU/WechatIMG17527_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HorhanHXhZ8WeWpH1udCnnXe3UX1Olmp619RN3nHxNBBmU/WechatIMG17527_crop43.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HorhanHXhZ8WeWpH1udCnnXe3UX1Olmp619RN3nHxNBBmU/WechatIMG17527_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HorhanHXhZ8WeWpH1udCnnXe3UX1Olmp619RN3nHxNBBmU/WechatIMG17527_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:28:13.995762Z", "created_at": "2023-12-15T08:27:59.350010Z", "data_removed": false, "error": null, "id": "zxctnwtbp2ke2qy53cxkl2ekv4", "input": { "image": "https://replicate.delivery/pbxt/K3HorhanHXhZ8WeWpH1udCnnXe3UX1Olmp619RN3nHxNBBmU/WechatIMG17527_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.16s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.13it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.45s/it]", "metrics": { "predict_time": 14.571437, "total_time": 14.645752 }, "output": [ "https://replicate.delivery/pbxt/fS7CT14IFJXyHiAIfcKospCWztxuheAEyR8zffRKhR1lDgTQC/depth_bw.png", "https://replicate.delivery/pbxt/TadKPFoM0Nr3Ktl6gyAcdEUp5mUTWN8rOokJlNJD0zTHAngE/depth_colored.png" ], "started_at": "2023-12-15T08:27:59.424325Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zxctnwtbp2ke2qy53cxkl2ekv4", "cancel": "https://api.replicate.com/v1/predictions/zxctnwtbp2ke2qy53cxkl2ekv4/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.16s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.13it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.45s/it]
Prediction
adirik/marigold:1a363593IDee7744lbnlzxtwgdxez6neo66mStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HpMRbaY4XdvJt6SXDfnau7DyMRUIREKxpJT0uoxNH86mpJ/STS_114_day_before_launch_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HpMRbaY4XdvJt6SXDfnau7DyMRUIREKxpJT0uoxNH86mpJ/STS_114_day_before_launch_crop43.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HpMRbaY4XdvJt6SXDfnau7DyMRUIREKxpJT0uoxNH86mpJ/STS_114_day_before_launch_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HpMRbaY4XdvJt6SXDfnau7DyMRUIREKxpJT0uoxNH86mpJ/STS_114_day_before_launch_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:28:44.514139Z", "created_at": "2023-12-15T08:28:30.090852Z", "data_removed": false, "error": null, "id": "ee7744lbnlzxtwgdxez6neo66m", "input": { "image": "https://replicate.delivery/pbxt/K3HpMRbaY4XdvJt6SXDfnau7DyMRUIREKxpJT0uoxNH86mpJ/STS_114_day_before_launch_crop43.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.37s/it]", "metrics": { "predict_time": 14.319215, "total_time": 14.423287 }, "output": [ "https://replicate.delivery/pbxt/0lWdWN2BvLoEIRPeWS7lEZ8Xa7KPpecznB4YGtb7kv57AcCSA/depth_bw.png", "https://replicate.delivery/pbxt/2xkU38j1rKbBGlBSPeqSNrsypkVSsG9KfIeCqudIwL15B4EkA/depth_colored.png" ], "started_at": "2023-12-15T08:28:30.194924Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ee7744lbnlzxtwgdxez6neo66m", "cancel": "https://api.replicate.com/v1/predictions/ee7744lbnlzxtwgdxez6neo66m/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.37s/it]
Prediction
adirik/marigold:1a363593IDz7mj72lb5ta3rouits5leho4hmStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HqoCZAd1g4hzLB01eEzvkyPQlAzxFckg8D2Pj4K8Ok5toE/files_bee.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HqoCZAd1g4hzLB01eEzvkyPQlAzxFckg8D2Pj4K8Ok5toE/files_bee.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HqoCZAd1g4hzLB01eEzvkyPQlAzxFckg8D2Pj4K8Ok5toE/files_bee.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HqoCZAd1g4hzLB01eEzvkyPQlAzxFckg8D2Pj4K8Ok5toE/files_bee.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:30:17.374938Z", "created_at": "2023-12-15T08:30:02.962303Z", "data_removed": false, "error": null, "id": "z7mj72lb5ta3rouits5leho4hm", "input": { "image": "https://replicate.delivery/pbxt/K3HqoCZAd1g4hzLB01eEzvkyPQlAzxFckg8D2Pj4K8Ok5toE/files_bee.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.09it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.38s/it]", "metrics": { "predict_time": 14.374841, "total_time": 14.412635 }, "output": [ "https://replicate.delivery/pbxt/N3On4OOHxrpcJtEPNmcF3HROgJfjL0EzhWePf9AIz02uE4EkA/depth_bw.png", "https://replicate.delivery/pbxt/mLjUAMoVeowYPS3e2kYqnUFB68dfCBXPTrxFNrxWcIZxE4EkA/depth_colored.png" ], "started_at": "2023-12-15T08:30:03.000097Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/z7mj72lb5ta3rouits5leho4hm", "cancel": "https://api.replicate.com/v1/predictions/z7mj72lb5ta3rouits5leho4hm/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.05it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.09it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.13it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.14it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.38s/it]
Prediction
adirik/marigold:1a363593ID3olmeqdbcg5foloiscmujnvz7eStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HpzgbSdE1ogtGAXXYB67Uh88Y2XmNvXTPGYyKotD34la2x/Lincoln_Cathedral_Chapter_House.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HpzgbSdE1ogtGAXXYB67Uh88Y2XmNvXTPGYyKotD34la2x/Lincoln_Cathedral_Chapter_House.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HpzgbSdE1ogtGAXXYB67Uh88Y2XmNvXTPGYyKotD34la2x/Lincoln_Cathedral_Chapter_House.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HpzgbSdE1ogtGAXXYB67Uh88Y2XmNvXTPGYyKotD34la2x/Lincoln_Cathedral_Chapter_House.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:29:25.443773Z", "created_at": "2023-12-15T08:29:10.468453Z", "data_removed": false, "error": null, "id": "3olmeqdbcg5foloiscmujnvz7e", "input": { "image": "https://replicate.delivery/pbxt/K3HpzgbSdE1ogtGAXXYB67Uh88Y2XmNvXTPGYyKotD34la2x/Lincoln_Cathedral_Chapter_House.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.59s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.17s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.03s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.03it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.07it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.11it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.12it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.13it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.47s/it]", "metrics": { "predict_time": 14.922706, "total_time": 14.97532 }, "output": [ "https://replicate.delivery/pbxt/O0cmbtUiayZwCBbWzcnne5dGJrVnTspHqOrbeG3S9HnjBcCSA/depth_bw.png", "https://replicate.delivery/pbxt/pnnfM3Bots3BJqPW8Ehem13CVfkufu2MvyR6nQMhqwhSGwJIB/depth_colored.png" ], "started_at": "2023-12-15T08:29:10.521067Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3olmeqdbcg5foloiscmujnvz7e", "cancel": "https://api.replicate.com/v1/predictions/3olmeqdbcg5foloiscmujnvz7e/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.59s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.17s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.03s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.03it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.07it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.11it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.12it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.13it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.47s/it]
Prediction
adirik/marigold:1a363593IDpvkgfytbzq2a34zw5x26oded4yStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3Ht9IEFlsAAXXIuLiOiRZIMoWnwDBt46qcuOx3GTbRP26KX/files_swings.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3Ht9IEFlsAAXXIuLiOiRZIMoWnwDBt46qcuOx3GTbRP26KX/files_swings.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3Ht9IEFlsAAXXIuLiOiRZIMoWnwDBt46qcuOx3GTbRP26KX/files_swings.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3Ht9IEFlsAAXXIuLiOiRZIMoWnwDBt46qcuOx3GTbRP26KX/files_swings.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:32:45.500230Z", "created_at": "2023-12-15T08:32:31.301569Z", "data_removed": false, "error": null, "id": "pvkgfytbzq2a34zw5x26oded4y", "input": { "image": "https://replicate.delivery/pbxt/K3Ht9IEFlsAAXXIuLiOiRZIMoWnwDBt46qcuOx3GTbRP26KX/files_swings.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.58s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.16s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.39s/it]", "metrics": { "predict_time": 14.159943, "total_time": 14.198661 }, "output": [ "https://replicate.delivery/pbxt/EKZOphPHyHYsJdB7e1Mb2BeRYLK6LwVrrSlkttoIGR0sEcCSA/depth_bw.png", "https://replicate.delivery/pbxt/t6bvQfkrpoygKKhMHcwYRsUaQYSi9H6Y4wDrbXpEeE9tEcCSA/depth_colored.png" ], "started_at": "2023-12-15T08:32:31.340287Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pvkgfytbzq2a34zw5x26oded4y", "cancel": "https://api.replicate.com/v1/predictions/pvkgfytbzq2a34zw5x26oded4y/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.58s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.16s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.39s/it]
Prediction
adirik/marigold:1a363593ID27v25d3buswn34er73ztugstxqStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HrncwgRcCEYr3ohl0zvap90Ib4wAAEb3T1V1zsupxtQ8nN/example_0.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HrncwgRcCEYr3ohl0zvap90Ib4wAAEb3T1V1zsupxtQ8nN/example_0.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HrncwgRcCEYr3ohl0zvap90Ib4wAAEb3T1V1zsupxtQ8nN/example_0.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HrncwgRcCEYr3ohl0zvap90Ib4wAAEb3T1V1zsupxtQ8nN/example_0.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:31:21.373539Z", "created_at": "2023-12-15T08:31:06.565725Z", "data_removed": false, "error": null, "id": "27v25d3buswn34er73ztugstxq", "input": { "image": "https://replicate.delivery/pbxt/K3HrncwgRcCEYr3ohl0zvap90Ib4wAAEb3T1V1zsupxtQ8nN/example_0.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.56s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.39s/it]", "metrics": { "predict_time": 14.770289, "total_time": 14.807814 }, "output": [ "https://replicate.delivery/pbxt/2mR5c2igct6sLZV3TkFwe5ZYXQe4MTXK1mqLePC3piCvG4EkA/depth_bw.png", "https://replicate.delivery/pbxt/eyWf0XDPc9rhA0gUs6pfGtpQJDRtsXlmJnfQ4kgdu2OlNwJIB/depth_colored.png" ], "started_at": "2023-12-15T08:31:06.603250Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/27v25d3buswn34er73ztugstxq", "cancel": "https://api.replicate.com/v1/predictions/27v25d3buswn34er73ztugstxq/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.56s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.39s/it]
Prediction
adirik/marigold:1a363593ID6svvhgtbse4i7372uiuv6qj6qmStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HsJRvTU665Mhb4k7AwzwjuuOtpIf0TxakhLCCVt1QRI2Rg/example_4.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HsJRvTU665Mhb4k7AwzwjuuOtpIf0TxakhLCCVt1QRI2Rg/example_4.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HsJRvTU665Mhb4k7AwzwjuuOtpIf0TxakhLCCVt1QRI2Rg/example_4.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HsJRvTU665Mhb4k7AwzwjuuOtpIf0TxakhLCCVt1QRI2Rg/example_4.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:31:53.846953Z", "created_at": "2023-12-15T08:31:39.013133Z", "data_removed": false, "error": null, "id": "6svvhgtbse4i7372uiuv6qj6qm", "input": { "image": "https://replicate.delivery/pbxt/K3HsJRvTU665Mhb4k7AwzwjuuOtpIf0TxakhLCCVt1QRI2Rg/example_4.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.13it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.43s/it]", "metrics": { "predict_time": 14.766253, "total_time": 14.83382 }, "output": [ "https://replicate.delivery/pbxt/lPh2IVyuApqXO9kfNSoqlzqfYiOi3a74JhyoyLjeeu4gPwJIB/depth_bw.png", "https://replicate.delivery/pbxt/KMyiw0xR42alMpHmJCa2x0z9RU8Ae39VTYntEhTSVjl8BOBJA/depth_colored.png" ], "started_at": "2023-12-15T08:31:39.080700Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6svvhgtbse4i7372uiuv6qj6qm", "cancel": "https://api.replicate.com/v1/predictions/6svvhgtbse4i7372uiuv6qj6qm/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.57s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.15s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.10it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.13it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.14it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.43s/it]
Prediction
adirik/marigold:1a363593IDmxznwkdbmh2dxckadhq3qxpvvyStatusSucceededSourceWebHardwareA40Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/K3HtgAOtKrM1b7HB6hYfXDVKXiq7cs64PQQp8ppOV5DYg3gI/example_5.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", { input: { image: "https://replicate.delivery/pbxt/K3HtgAOtKrM1b7HB6hYfXDVKXiq7cs64PQQp8ppOV5DYg3gI/example_5.jpg", max_iter: 5, num_infer: 10, resize_input: true, denoise_steps: 10, reduction_method: "median", regularizer_strength: 0.02 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/marigold:1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", input={ "image": "https://replicate.delivery/pbxt/K3HtgAOtKrM1b7HB6hYfXDVKXiq7cs64PQQp8ppOV5DYg3gI/example_5.jpg", "max_iter": 5, "num_infer": 10, "resize_input": True, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run adirik/marigold using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818", "input": { "image": "https://replicate.delivery/pbxt/K3HtgAOtKrM1b7HB6hYfXDVKXiq7cs64PQQp8ppOV5DYg3gI/example_5.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-15T08:33:19.013048Z", "created_at": "2023-12-15T08:33:04.358246Z", "data_removed": false, "error": null, "id": "mxznwkdbmh2dxckadhq3qxpvvy", "input": { "image": "https://replicate.delivery/pbxt/K3HtgAOtKrM1b7HB6hYfXDVKXiq7cs64PQQp8ppOV5DYg3gI/example_5.jpg", "max_iter": 5, "num_infer": 10, "resize_input": true, "denoise_steps": 10, "reduction_method": "median", "regularizer_strength": 0.02 }, "logs": "multiple inference: 0%| | 0/1 [00:00<?, ?it/s]\ndenoising: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\ndenoising: 10%|█ | 1/10 [00:01<00:14, 1.58s/it]\u001b[A\ndenoising: 20%|██ | 2/10 [00:02<00:09, 1.16s/it]\u001b[A\ndenoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it]\u001b[A\ndenoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s]\u001b[A\ndenoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s]\u001b[A\ndenoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s]\u001b[A\ndenoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s]\u001b[A\ndenoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s]\u001b[A\ndenoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s]\u001b[A\ndenoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s]\u001b[A\n \u001b[A\nmultiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.39s/it]", "metrics": { "predict_time": 14.61633, "total_time": 14.654802 }, "output": [ "https://replicate.delivery/pbxt/OkOKDOE1BloeIaPEDIWR6LVSGQoxQQkprg0jq3gGv7qmCOBJA/depth_bw.png", "https://replicate.delivery/pbxt/iq8eVorj2AzrNyFynG8jbFBtVPH6piqXQJfCidKH5gZOFcCSA/depth_colored.png" ], "started_at": "2023-12-15T08:33:04.396718Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/mxznwkdbmh2dxckadhq3qxpvvy", "cancel": "https://api.replicate.com/v1/predictions/mxznwkdbmh2dxckadhq3qxpvvy/cancel" }, "version": "1a363593bc4882684fc58042d19db5e13a810e44e02f8d4c32afd1eb30464818" }
Generated inmultiple inference: 0%| | 0/1 [00:00<?, ?it/s] denoising: 0%| | 0/10 [00:00<?, ?it/s] denoising: 10%|█ | 1/10 [00:01<00:14, 1.58s/it] denoising: 20%|██ | 2/10 [00:02<00:09, 1.16s/it] denoising: 30%|███ | 3/10 [00:03<00:07, 1.02s/it] denoising: 40%|████ | 4/10 [00:04<00:05, 1.04it/s] denoising: 50%|█████ | 5/10 [00:05<00:04, 1.08it/s] denoising: 60%|██████ | 6/10 [00:05<00:03, 1.11it/s] denoising: 70%|███████ | 7/10 [00:06<00:02, 1.12it/s] denoising: 80%|████████ | 8/10 [00:07<00:01, 1.13it/s] denoising: 90%|█████████ | 9/10 [00:08<00:00, 1.14it/s] denoising: 100%|██████████| 10/10 [00:09<00:00, 1.15it/s] multiple inference: 100%|██████████| 1/1 [00:09<00:00, 9.39s/it]
Want to make some of these yourself?
Run this model