bytedance
/
hyper-flux-8step
Hyper FLUX 8-step by ByteDance
Prediction
bytedance/hyper-flux-8step:16084e97IDzr6w3kzn81rm60cjb6j9sqh5pcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a dog smiling and looking directly at the camera, wearing a white t-shirt with the word "HYPER" printed on it.
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "a dog smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "a dog smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "a dog smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "a dog smiling and looking directly at the camera, wearing a white t-shirt with the word \\"HYPER\\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:27:20.324335Z", "created_at": "2024-10-04T22:27:15.904000Z", "data_removed": false, "error": null, "id": "zr6w3kzn81rm60cjb6j9sqh5pc", "input": { "prompt": "a dog smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 63685\nPrompt: a dog smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.34it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.51it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.91it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.67it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.46it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.43it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.40it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.55it/s]", "metrics": { "predict_time": 2.100584142, "total_time": 4.420335 }, "output": [ "https://replicate.delivery/yhqm/bKCAFhWFtbafL6Q31fEkfzVUKDUxY3GcdU1KGtR1AfRhcHOOB/out-0.webp" ], "started_at": "2024-10-04T22:27:18.223751Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zr6w3kzn81rm60cjb6j9sqh5pc", "cancel": "https://api.replicate.com/v1/predictions/zr6w3kzn81rm60cjb6j9sqh5pc/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 63685 Prompt: a dog smiling and looking directly at the camera, wearing a white t-shirt with the word "HYPER" printed on it. txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.34it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.51it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.91it/s] 50%|█████ | 4/8 [00:00<00:00, 4.67it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.46it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.43it/s] 100%|██████████| 8/8 [00:01<00:00, 4.40it/s] 100%|██████████| 8/8 [00:01<00:00, 4.55it/s]
Prediction
bytedance/hyper-flux-8step:16084e97IDrpngbjmc8srm00cjb6jsy9gkfmStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:27:56.707538Z", "created_at": "2024-10-04T22:27:54.566000Z", "data_removed": false, "error": null, "id": "rpngbjmc8srm00cjb6jsy9gkfm", "input": { "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 39814\nPrompt: a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.35it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.52it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.69it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.47it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.44it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.41it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.55it/s]", "metrics": { "predict_time": 2.106095071, "total_time": 2.141538 }, "output": [ "https://replicate.delivery/yhqm/NA42Lq7beNXtKiufAjU06T0pdCeuOLbBPee8Bmwp5mGj9OccC/out-0.webp" ], "started_at": "2024-10-04T22:27:54.601443Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rpngbjmc8srm00cjb6jsy9gkfm", "cancel": "https://api.replicate.com/v1/predictions/rpngbjmc8srm00cjb6jsy9gkfm/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 39814 Prompt: a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.35it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.52it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s] 50%|█████ | 4/8 [00:00<00:00, 4.69it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.47it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.44it/s] 100%|██████████| 8/8 [00:01<00:00, 4.41it/s] 100%|██████████| 8/8 [00:01<00:00, 4.55it/s]
Prediction
bytedance/hyper-flux-8step:16084e97IDyvy74vgxx9rm00cjb6k97ttp08StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:28:33.969184Z", "created_at": "2024-10-04T22:28:31.850000Z", "data_removed": false, "error": null, "id": "yvy74vgxx9rm00cjb6k97ttp08", "input": { "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 1988\nPrompt: a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.36it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.54it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.93it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.69it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.56it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.49it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.44it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.42it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.56it/s]", "metrics": { "predict_time": 2.111566556, "total_time": 2.119184 }, "output": [ "https://replicate.delivery/yhqm/yzskkeUuaFWft0vlrgvOkiYaDvj2nrF4t7bOJ2MvcfijwDHnA/out-0.webp" ], "started_at": "2024-10-04T22:28:31.857617Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yvy74vgxx9rm00cjb6k97ttp08", "cancel": "https://api.replicate.com/v1/predictions/yvy74vgxx9rm00cjb6k97ttp08/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 1988 Prompt: a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage. txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.36it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.54it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.93it/s] 50%|█████ | 4/8 [00:00<00:00, 4.69it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.56it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.49it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.44it/s] 100%|██████████| 8/8 [00:01<00:00, 4.42it/s] 100%|██████████| 8/8 [00:01<00:00, 4.56it/s]
Prediction
bytedance/hyper-flux-8step:16084e97IDvefqapk55srm60cjb6k8y3r0zwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- womens street skateboarding final in Paris Olympics 2024
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "womens street skateboarding final in Paris Olympics 2024", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:28:52.200635Z", "created_at": "2024-10-04T22:28:50.094000Z", "data_removed": false, "error": null, "id": "vefqapk55srm60cjb6k8y3r0zw", "input": { "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 11501\nPrompt: womens street skateboarding final in Paris Olympics 2024\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.38it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.55it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.94it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.70it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.57it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.50it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.45it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.42it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.57it/s]", "metrics": { "predict_time": 2.097066785, "total_time": 2.106635 }, "output": [ "https://replicate.delivery/yhqm/Mtv6KWSjfKUCACP81TYmmVHu4GG41VIN5GftGf5pjUWJxDHnA/out-0.webp" ], "started_at": "2024-10-04T22:28:50.103568Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vefqapk55srm60cjb6k8y3r0zw", "cancel": "https://api.replicate.com/v1/predictions/vefqapk55srm60cjb6k8y3r0zw/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 11501 Prompt: womens street skateboarding final in Paris Olympics 2024 txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.38it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.55it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.94it/s] 50%|█████ | 4/8 [00:00<00:00, 4.70it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.57it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.50it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.45it/s] 100%|██████████| 8/8 [00:01<00:00, 4.42it/s] 100%|██████████| 8/8 [00:01<00:00, 4.57it/s]
Prediction
bytedance/hyper-flux-8step:16084e97IDfqqze80rt1rm20cjb6ks63h404StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:29:56.571065Z", "created_at": "2024-10-04T22:29:36.080000Z", "data_removed": false, "error": null, "id": "fqqze80rt1rm20cjb6ks63h404", "input": { "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 54934\nPrompt: a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.36it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.52it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.68it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.48it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.44it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.41it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.55it/s]", "metrics": { "predict_time": 2.106530401, "total_time": 20.491065 }, "output": [ "https://replicate.delivery/yhqm/XyFD8gzo0KIVMR2ipUQ1BefUKdj8nfCRV9B95KdxdDpIzDHnA/out-0.webp" ], "started_at": "2024-10-04T22:29:54.464534Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fqqze80rt1rm20cjb6ks63h404", "cancel": "https://api.replicate.com/v1/predictions/fqqze80rt1rm20cjb6ks63h404/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 54934 Prompt: a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.36it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.52it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s] 50%|█████ | 4/8 [00:00<00:00, 4.68it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.48it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.44it/s] 100%|██████████| 8/8 [00:01<00:00, 4.41it/s] 100%|██████████| 8/8 [00:01<00:00, 4.55it/s]
Prediction
bytedance/hyper-flux-8step:16084e97IDrptjtzd08drm60cjb6ktb3msc8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a blue paradise bird in the jungle
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "a blue paradise bird in the jungle", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:30:12.859796Z", "created_at": "2024-10-04T22:30:10.755000Z", "data_removed": false, "error": null, "id": "rptjtzd08drm60cjb6ktb3msc8", "input": { "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 43222\nPrompt: a blue paradise bird in the jungle\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.35it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.52it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.68it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.48it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.43it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.41it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.55it/s]", "metrics": { "predict_time": 2.093797253, "total_time": 2.104796 }, "output": [ "https://replicate.delivery/yhqm/h1D0GLWra8LEOFo57RGT2nryzfDcoafZJUOdfhZGTbEpzDHnA/out-0.webp" ], "started_at": "2024-10-04T22:30:10.765998Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rptjtzd08drm60cjb6ktb3msc8", "cancel": "https://api.replicate.com/v1/predictions/rptjtzd08drm60cjb6ktb3msc8/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 43222 Prompt: a blue paradise bird in the jungle txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.35it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.52it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s] 50%|█████ | 4/8 [00:00<00:00, 4.68it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.48it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.43it/s] 100%|██████████| 8/8 [00:01<00:00, 4.41it/s] 100%|██████████| 8/8 [00:01<00:00, 4.55it/s]
Prediction
bytedance/hyper-flux-8step:16084e97IDedec76qacdrm00cjb6ksar0vhrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a serene landscape with mountains and a lake at sunset
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "a serene landscape with mountains and a lake at sunset", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:30:31.855950Z", "created_at": "2024-10-04T22:30:29.731000Z", "data_removed": false, "error": null, "id": "edec76qacdrm00cjb6ksar0vhr", "input": { "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 1379\nPrompt: a serene landscape with mountains and a lake at sunset\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.37it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.53it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.67it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.48it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.43it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.40it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.55it/s]", "metrics": { "predict_time": 2.116300733, "total_time": 2.12495 }, "output": [ "https://replicate.delivery/yhqm/zkxPQYotMJIPFJgaJwogayoOAENrJB5v3cWZiDTaj2zhewxJA/out-0.webp" ], "started_at": "2024-10-04T22:30:29.739649Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/edec76qacdrm00cjb6ksar0vhr", "cancel": "https://api.replicate.com/v1/predictions/edec76qacdrm00cjb6ksar0vhr/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 1379 Prompt: a serene landscape with mountains and a lake at sunset txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.37it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.53it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.92it/s] 50%|█████ | 4/8 [00:00<00:00, 4.67it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.55it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.48it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.43it/s] 100%|██████████| 8/8 [00:01<00:00, 4.40it/s] 100%|██████████| 8/8 [00:01<00:00, 4.55it/s]
Prediction
bytedance/hyper-flux-8step:16084e97IDza5h3nga11rm60cjb6q9r3w10rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- A chocolate cookie
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 8
{ "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", { input: { prompt: "A chocolate cookie", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-8step:16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", input={ "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run bytedance/hyper-flux-8step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16084e9731223a4367228928a6cb393b21736da2a0ca6a5a492ce311f0a97143", "input": { "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:37:15.755318Z", "created_at": "2024-10-04T22:37:11.048000Z", "data_removed": false, "error": null, "id": "za5h3nga11rm60cjb6q9r3w10r", "input": { "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 8 }, "logs": "Using seed: 8643\nPrompt: A chocolate cookie\ntxt2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 4.32it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.49it/s]\n 38%|███▊ | 3/8 [00:00<00:01, 4.89it/s]\n 50%|█████ | 4/8 [00:00<00:00, 4.65it/s]\n 62%|██████▎ | 5/8 [00:01<00:00, 4.47it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 4.41it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 4.38it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.36it/s]\n100%|██████████| 8/8 [00:01<00:00, 4.50it/s]", "metrics": { "predict_time": 2.12347527, "total_time": 4.707318 }, "output": [ "https://replicate.delivery/yhqm/ytlyZ34Xm66qK1kqycJxwRFJcl7XBrHcoMS6mtcRQG5Gg44E/out-0.webp" ], "started_at": "2024-10-04T22:37:13.631842Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/za5h3nga11rm60cjb6q9r3w10r", "cancel": "https://api.replicate.com/v1/predictions/za5h3nga11rm60cjb6q9r3w10r/cancel" }, "version": "81946b1e09b256c543b35f37333a30d0d02ee2cd8c4f77cd915873a1ca622bad" }
Generated inUsing seed: 8643 Prompt: A chocolate cookie txt2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 4.32it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.49it/s] 38%|███▊ | 3/8 [00:00<00:01, 4.89it/s] 50%|█████ | 4/8 [00:00<00:00, 4.65it/s] 62%|██████▎ | 5/8 [00:01<00:00, 4.47it/s] 75%|███████▌ | 6/8 [00:01<00:00, 4.41it/s] 88%|████████▊ | 7/8 [00:01<00:00, 4.38it/s] 100%|██████████| 8/8 [00:01<00:00, 4.36it/s] 100%|██████████| 8/8 [00:01<00:00, 4.50it/s]
Want to make some of these yourself?
Run this model