Unsupervised Night Image Enhancement
{ "image": "https://replicate.delivery/mgxm/5a860a3d-90b8-4eb5-9428-68398c3326ee/23.png" }
npm install replicate
import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cjwbw/night-enhancement using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cjwbw/night-enhancement:4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1", { input: { image: "https://replicate.delivery/mgxm/5a860a3d-90b8-4eb5-9428-68398c3326ee/23.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
import replicate
output = replicate.run( "cjwbw/night-enhancement:4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1", input={ "image": "https://replicate.delivery/mgxm/5a860a3d-90b8-4eb5-9428-68398c3326ee/23.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/night-enhancement:4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1", "input": { "image": "https://replicate.delivery/mgxm/5a860a3d-90b8-4eb5-9428-68398c3326ee/23.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{ "completed_at": "2022-08-13T17:15:29.898541Z", "created_at": "2022-08-13T17:13:55.647688Z", "data_removed": false, "error": null, "id": "5zpn2gfxoncvpm66wwpol7r4bu", "input": { "image": "https://replicate.delivery/mgxm/5a860a3d-90b8-4eb5-9428-68398c3326ee/23.png" }, "logs": "# datasetpath : LOL\nresults/LOL/model/*.pt\nmodel_list ['results/LOL/model/LOL_params_0900000.pt']\niter 900000\n Load SUCCESS\npredicting: 1 / 1", "metrics": { "predict_time": 6.080014, "total_time": 94.250853 }, "output": "https://replicate.delivery/mgxm/60c4c0d8-c82f-42e0-96ee-71392d32b6fe/output.png", "started_at": "2022-08-13T17:15:23.818527Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5zpn2gfxoncvpm66wwpol7r4bu", "cancel": "https://api.replicate.com/v1/predictions/5zpn2gfxoncvpm66wwpol7r4bu/cancel" }, "version": "4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1" }
# datasetpath : LOL results/LOL/model/*.pt model_list ['results/LOL/model/LOL_params_0900000.pt'] iter 900000 Load SUCCESS predicting: 1 / 1
{ "image": "https://replicate.delivery/mgxm/d8a238b5-f3a9-47d2-bf56-8aacfca874cd/low00697.png" }
const output = await replicate.run( "cjwbw/night-enhancement:4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1", { input: { image: "https://replicate.delivery/mgxm/d8a238b5-f3a9-47d2-bf56-8aacfca874cd/low00697.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
output = replicate.run( "cjwbw/night-enhancement:4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1", input={ "image": "https://replicate.delivery/mgxm/d8a238b5-f3a9-47d2-bf56-8aacfca874cd/low00697.png" } ) print(output)
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/night-enhancement:4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1", "input": { "image": "https://replicate.delivery/mgxm/d8a238b5-f3a9-47d2-bf56-8aacfca874cd/low00697.png" } }' \ https://api.replicate.com/v1/predictions
{ "completed_at": "2022-08-13T17:15:45.375433Z", "created_at": "2022-08-13T17:15:43.130371Z", "data_removed": false, "error": null, "id": "topmwaxc3vgazcahkd666m6xqu", "input": { "image": "https://replicate.delivery/mgxm/d8a238b5-f3a9-47d2-bf56-8aacfca874cd/low00697.png" }, "logs": "# datasetpath : LOL\nresults/LOL/model/*.pt\nmodel_list ['results/LOL/model/LOL_params_0900000.pt']\niter 900000\n Load SUCCESS\npredicting: 1 / 1", "metrics": { "predict_time": 2.088976, "total_time": 2.245062 }, "output": "https://replicate.delivery/mgxm/58d80f26-b29c-414b-a476-5b5dccc1269f/output.png", "started_at": "2022-08-13T17:15:43.286457Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/topmwaxc3vgazcahkd666m6xqu", "cancel": "https://api.replicate.com/v1/predictions/topmwaxc3vgazcahkd666m6xqu/cancel" }, "version": "4328e402cfedafa70ad7cec04412e86ab61832204deccd94108ae5222c9b1ae1" }
Want to make some of these yourself?
A linear estimator on top of clip to predict the aesthetic quality of pictures
Multilingual Stable Diffusion
a dreambooth model trained on a diverse set of analog photographs
Anime-themed text-to-image stable diffusion model
Audio-Driven Synthesis of Photorealistic Portrait Animations
high-quality, highly detailed anime style stable-diffusion
high-quality, highly detailed anime style stable-diffusion with better VAE
high-quality, highly detailed anime-style Stable Diffusion models
App Icons Generator V1 (DreamBooth Model)
Separate Anything You Describe
Real-Time High-Resolution Background Matting
Colorization using a Generative Color Prior for Natural Images
Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing
Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing with ControlNet
Language-Free Training of a Text-to-Image Generator with CLIP
Clip-Guided Diffusion Model for Image Generation
Generates pokemon sprites from prompt
openai/clip-vit-large-patch14 with Transformers
A Visual Language Model for GUI Agents
powerful open-source visual language model
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.