prunaai / flux.1-dev
This is the fastest Flux Dev endpoint in the world, contact us for more at pruna.ai
Prediction
prunaai/flux.1-dev:6ee81ffe35d342a8fecaa47854824401caf367808090fa39eb78e781516419f2IDkay3qnyxmsrme0cpxnmtg6wgagStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- a red apple
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Extra Juiced 🔥 (more speed)
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
{ "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:6ee81ffe35d342a8fecaa47854824401caf367808090fa39eb78e781516419f2", { input: { seed: -1, prompt: "a red apple", guidance: 3.5, image_size: 1024, speed_mode: "Extra Juiced 🔥 (more speed)", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:6ee81ffe35d342a8fecaa47854824401caf367808090fa39eb78e781516419f2", input={ "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:6ee81ffe35d342a8fecaa47854824401caf367808090fa39eb78e781516419f2", "input": { "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-05-20T11:17:41.692533Z", "created_at": "2025-05-20T11:17:40.390000Z", "data_removed": false, "error": null, "id": "kay3qnyxmsrme0cpxnmtg6wgag", "input": { "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 19.95it/s]\n100%|██████████| 28/28 [00:01<00:00, 27.13it/s]", "metrics": { "predict_time": 1.292961029, "total_time": 1.302533 }, "output": "https://replicate.delivery/xezq/grRzLW2CE0pmMhDwn144BTQdC3ZGEFKGOEtpMCNwOmX1WoLF/output_-1_0.webp", "started_at": "2025-05-20T11:17:40.399572Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-3wzimlbspk4ql5trwn6wvqtdxrxcwkx4iv3jlmliicirttncfepa", "get": "https://api.replicate.com/v1/predictions/kay3qnyxmsrme0cpxnmtg6wgag", "cancel": "https://api.replicate.com/v1/predictions/kay3qnyxmsrme0cpxnmtg6wgag/cancel" }, "version": "6ee81ffe35d342a8fecaa47854824401caf367808090fa39eb78e781516419f2" }
Prediction
prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21IDnwdxqf9aj1rm80cpxqksvdbra4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- a red apple
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Blink of an eye 👁️
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
{ "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", { input: { seed: -1, prompt: "a red apple", guidance: 3.5, image_size: 1024, speed_mode: "Blink of an eye 👁️", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", input={ "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", "input": { "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-05-20T13:34:33.106705Z", "created_at": "2025-05-20T13:34:32.080000Z", "data_removed": false, "error": null, "id": "nwdxqf9aj1rm80cpxqksvdbra4", "input": { "seed": -1, "prompt": "a red apple", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 24.29it/s]\n100%|██████████| 28/28 [00:00<00:00, 32.21it/s]", "metrics": { "predict_time": 1.020165048, "total_time": 1.026705 }, "output": "https://replicate.delivery/xezq/dpNymmdBmfVjUy7VQex1vY6WF3Ncfha9BlvZmQqtB97T3GdpA/output_-1_0.webp", "started_at": "2025-05-20T13:34:32.086540Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-3lm4n5bom6q7mynr36jze5s7xr5dycnrflyuqbgktfgjqsiqbzga", "get": "https://api.replicate.com/v1/predictions/nwdxqf9aj1rm80cpxqksvdbra4", "cancel": "https://api.replicate.com/v1/predictions/nwdxqf9aj1rm80cpxqksvdbra4/cancel" }, "version": "56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21" }
Prediction
prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21IDwgrgz98nd5rmc0cpxr3bs43m1wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- a cat
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Extra Juiced 🔥 (more speed)
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
{ "seed": -1, "prompt": "a cat", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", { input: { seed: -1, prompt: "a cat", guidance: 3.5, image_size: 1024, speed_mode: "Extra Juiced 🔥 (more speed)", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", input={ "seed": -1, "prompt": "a cat", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", "input": { "seed": -1, "prompt": "a cat", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-05-20T14:08:19.607298Z", "created_at": "2025-05-20T14:08:18.281000Z", "data_removed": false, "error": null, "id": "wgrgz98nd5rmc0cpxr3bs43m1w", "input": { "seed": -1, "prompt": "a cat", "guidance": 3.5, "image_size": 1024, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 16.91it/s]\n100%|██████████| 28/28 [00:01<00:00, 24.33it/s]", "metrics": { "predict_time": 1.316846815, "total_time": 1.326298 }, "output": "https://replicate.delivery/xezq/tC7DmFNwRj6VH9gDAevWaK93mPDgl7Pm3TUMOvfviqmT7juUA/output_-1_0.webp", "started_at": "2025-05-20T14:08:18.290452Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-obv5bbn7x4w6q2ka4lypahp4h2uk23sxwqw54nqllut5ob6sbsua", "get": "https://api.replicate.com/v1/predictions/wgrgz98nd5rmc0cpxr3bs43m1w", "cancel": "https://api.replicate.com/v1/predictions/wgrgz98nd5rmc0cpxr3bs43m1w/cancel" }, "version": "56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21" }
Prediction
prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21ID9r8dx8gx35rmc0cpzpzrm9wqrgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- a cat jumping in the air to catch a bird
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Juiced 🔥 (default)
- aspect_ratio
- 1:1
- output_format
- jpg
- output_quality
- 80
- num_inference_steps
- 28
{ "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", { input: { seed: -1, prompt: "a cat jumping in the air to catch a bird", guidance: 3.5, image_size: 1024, speed_mode: "Juiced 🔥 (default)", aspect_ratio: "1:1", output_format: "jpg", output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", input={ "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21", "input": { "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-05-23T15:24:44.133411Z", "created_at": "2025-05-23T15:24:42.649000Z", "data_removed": false, "error": null, "id": "9r8dx8gx35rmc0cpzpzrm9wqrg", "input": { "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:01<00:00, 15.00it/s]\n100%|██████████| 28/28 [00:01<00:00, 20.32it/s]", "metrics": { "predict_time": 1.477329648, "total_time": 1.484411 }, "output": "https://replicate.delivery/xezq/NshzbsHqH7ozGBWExoKcUQ6TYZgOMh8MWrwZwemiyHTeUkvUA/output_-1_0.jpeg", "started_at": "2025-05-23T15:24:42.656082Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-3envmobjzrnmlvd7dvpntfal2yr4chnxe5f5ixnccp7olkuhuxha", "get": "https://api.replicate.com/v1/predictions/9r8dx8gx35rmc0cpzpzrm9wqrg", "cancel": "https://api.replicate.com/v1/predictions/9r8dx8gx35rmc0cpzpzrm9wqrg/cancel" }, "version": "56af91e9dc4f4dacbac681cb1156b92eb92a280f96e695c64cfa9455c361bd21" }
Prediction
prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885IDfmn61w1c4srma0cqc59rsbmfdwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- black forest gateau cake spelling out the words "FLUX DEV", tasty, food photography, dynamic shot
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Blink of an eye 👁️
- aspect_ratio
- 1:1
- output_format
- jpg
- output_quality
- 78
- num_inference_steps
- 28
{ "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885", { input: { seed: -1, prompt: "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", guidance: 3.5, image_size: 1024, speed_mode: "Blink of an eye 👁️", aspect_ratio: "1:1", output_format: "jpg", output_quality: 78, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885", input={ "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885", "input": { "seed": -1, "prompt": "black forest gateau cake spelling out the words \\"FLUX DEV\\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-06-11T23:28:51.201919Z", "created_at": "2025-06-11T23:28:50.214000Z", "data_removed": false, "error": null, "id": "fmn61w1c4srma0cqc59rsbmfdw", "input": { "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 23.97it/s]\n100%|██████████| 28/28 [00:00<00:00, 36.39it/s]\nInference took 0.97 seconds", "metrics": { "predict_time": 0.979758798, "total_time": 0.987919 }, "output": "https://replicate.delivery/xezq/GHFSVUG4UQZ2CJUEfCPFUUFlAnaKDZct1g3ebzhhPOwzM81UA/output_-1_0.jpeg", "started_at": "2025-06-11T23:28:50.222160Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-hhhjbm3winf3iwq3j2mw22z2xaufxvoljy3fav2to3jj4urlyreq", "get": "https://api.replicate.com/v1/predictions/fmn61w1c4srma0cqc59rsbmfdw", "cancel": "https://api.replicate.com/v1/predictions/fmn61w1c4srma0cqc59rsbmfdw/cancel" }, "version": "56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:00<00:00, 23.97it/s] 100%|██████████| 28/28 [00:00<00:00, 36.39it/s] Inference took 0.97 seconds
Prediction
prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885ID3w0q9rn3kxrma0cqcc6rdd511wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- black forest gateau cake spelling out the words "FLUX DEV", tasty, food photography, dynamic shot
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Blink of an eye 👁️
- aspect_ratio
- 1:1
- output_format
- jpg
- output_quality
- 78
- num_inference_steps
- 28
{ "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885", { input: { seed: -1, prompt: "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", guidance: 3.5, image_size: 1024, speed_mode: "Blink of an eye 👁️", aspect_ratio: "1:1", output_format: "jpg", output_quality: 78, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885", input={ "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885", "input": { "seed": -1, "prompt": "black forest gateau cake spelling out the words \\"FLUX DEV\\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-06-12T07:32:08.696631Z", "created_at": "2025-06-12T07:32:07.711000Z", "data_removed": false, "error": null, "id": "3w0q9rn3kxrma0cqcc6rdd511w", "input": { "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 24.17it/s]\n100%|██████████| 28/28 [00:00<00:00, 36.61it/s]\nInference took 0.97 seconds", "metrics": { "predict_time": 0.97764929, "total_time": 0.985631 }, "output": "https://replicate.delivery/xezq/rDdrzuqAEh4cF14Y30maSdWqyx0TfarVOI1rfPWIJnE4RD2UA/output_-1_0.jpeg", "started_at": "2025-06-12T07:32:07.718981Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-rhmlz4tstljdhedj2qy4a36tbflfiwxx5s77z6monz2273wgvxpa", "get": "https://api.replicate.com/v1/predictions/3w0q9rn3kxrma0cqcc6rdd511w", "cancel": "https://api.replicate.com/v1/predictions/3w0q9rn3kxrma0cqcc6rdd511w/cancel" }, "version": "56105ad0a94ce9b021fa997e27bbd91206cd70c10f274fa7e283e5450e3b5885" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'generator'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:00<00:00, 24.17it/s] 100%|██████████| 28/28 [00:00<00:00, 36.61it/s] Inference took 0.97 seconds
Prediction
prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421dfID2tf93ppeqxrme0cqd5xsgsjp6rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- a cat jumping in the air to catch a bird
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Blink of an eye 👁️
- aspect_ratio
- 1:1
- output_format
- jpg
- output_quality
- 78
- num_inference_steps
- 28
{ "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", { input: { seed: -1, prompt: "a cat jumping in the air to catch a bird", guidance: 3.5, image_size: 1024, speed_mode: "Blink of an eye 👁️", aspect_ratio: "1:1", output_format: "jpg", output_quality: 78, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", input={ "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", "input": { "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-06-13T13:30:11.795182Z", "created_at": "2025-06-13T13:30:11.007000Z", "data_removed": false, "error": null, "id": "2tf93ppeqxrme0cqd5xsgsjp6r", "input": { "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Blink of an eye 👁️", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'max_sequence_length', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 37.96it/s]\n100%|██████████| 28/28 [00:00<00:00, 45.65it/s]\nInference took 0.77 seconds", "metrics": { "predict_time": 0.781794674, "total_time": 0.788182 }, "output": "https://replicate.delivery/xezq/1Fngn664gnoiLZI4YU85BACfPxXlY6FcM8rypa2nWc2xzObKA/output_-1_0.jpeg", "started_at": "2025-06-13T13:30:11.013387Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-yt6kv3aorcmccz5nohqrvke4zeakzvop4rcuxjt2k2h52erkqomq", "get": "https://api.replicate.com/v1/predictions/2tf93ppeqxrme0cqd5xsgsjp6r", "cancel": "https://api.replicate.com/v1/predictions/2tf93ppeqxrme0cqd5xsgsjp6r/cancel" }, "version": "786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'max_sequence_length', 'generator'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:00<00:00, 37.96it/s] 100%|██████████| 28/28 [00:00<00:00, 45.65it/s] Inference took 0.77 seconds
Prediction
prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421dfIDx29f245zw5rme0cqsndt9zr2ywStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- a cat jumping in the air to catch a bird
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Lightly Juiced 🍊 (more consistent)
- aspect_ratio
- 1:1
- output_format
- jpg
- output_quality
- 78
- num_inference_steps
- 28
{ "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", { input: { seed: -1, prompt: "a cat jumping in the air to catch a bird", guidance: 3.5, image_size: 1024, speed_mode: "Lightly Juiced 🍊 (more consistent)", aspect_ratio: "1:1", output_format: "jpg", output_quality: 78, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", input={ "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", "input": { "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-07-02T22:57:12.849415Z", "created_at": "2025-07-02T22:57:11.649000Z", "data_removed": false, "error": null, "id": "x29f245zw5rme0cqsndt9zr2yw", "input": { "seed": -1, "prompt": "a cat jumping in the air to catch a bird", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 78, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'max_sequence_length', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 18.84it/s]\n100%|██████████| 28/28 [00:01<00:00, 27.43it/s]\nInference took 1.18 seconds", "metrics": { "predict_time": 1.192620946, "total_time": 1.200415 }, "output": "https://replicate.delivery/xezq/gRfTNiczHlTif0HmXXHTG9BeLO7AmGC9NY4P4fS3b5Vj0azTB/output_-1_0.jpeg", "started_at": "2025-07-02T22:57:11.656794Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-sryh2nwb7dljcjtcjxbfymr5qozpqyytblj5xlvj6zktvnghggoq", "get": "https://api.replicate.com/v1/predictions/x29f245zw5rme0cqsndt9zr2yw", "cancel": "https://api.replicate.com/v1/predictions/x29f245zw5rme0cqsndt9zr2yw/cancel" }, "version": "786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'max_sequence_length', 'generator'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:00<00:00, 18.84it/s] 100%|██████████| 28/28 [00:01<00:00, 27.43it/s] Inference took 1.18 seconds
Prediction
prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421dfIDfk5yrdr02srma0cqsxkvhp0j1mStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- -1
- prompt
- black forest gateau cake spelling out the words "FLUX DEV", tasty, food photography, dynamic shot
- guidance
- 3.5
- image_size
- 1024
- speed_mode
- Lightly Juiced 🍊 (more consistent)
- aspect_ratio
- 1:1
- output_format
- jpg
- output_quality
- 80
- num_inference_steps
- 28
{ "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", { input: { seed: -1, prompt: "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", guidance: 3.5, image_size: 1024, speed_mode: "Lightly Juiced 🍊 (more consistent)", aspect_ratio: "1:1", output_format: "jpg", output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", input={ "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-dev using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-dev:786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df", "input": { "seed": -1, "prompt": "black forest gateau cake spelling out the words \\"FLUX DEV\\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-07-03T08:28:45.038689Z", "created_at": "2025-07-03T08:28:43.414000Z", "data_removed": false, "error": null, "id": "fk5yrdr02srma0cqsxkvhp0j1m", "input": { "seed": -1, "prompt": "black forest gateau cake spelling out the words \"FLUX DEV\", tasty, food photography, dynamic shot", "guidance": 3.5, "image_size": 1024, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "jpg", "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'max_sequence_length', 'generator']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:00<00:00, 18.76it/s]\n100%|██████████| 28/28 [00:01<00:00, 27.12it/s]\nInference took 1.20 seconds", "metrics": { "predict_time": 1.20581131, "total_time": 1.624689 }, "output": "https://replicate.delivery/xezq/9GxqhFOe6yQxViw83IvhbRftZtZ6ju3hwszaeuzgpgk6JezTB/output_-1_0.jpeg", "started_at": "2025-07-03T08:28:43.832877Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-cwll5kev7jssqqirrnogxcjl3kms2ocpkftxtwhopmasjpybnioa", "get": "https://api.replicate.com/v1/predictions/fk5yrdr02srma0cqsxkvhp0j1m", "cancel": "https://api.replicate.com/v1/predictions/fk5yrdr02srma0cqsxkvhp0j1m/cancel" }, "version": "786b08f5ce6469390ec0cd9164bde74d02a2af548316821eba0bbeb347b421df" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'negative_prompt', 'height', 'width', 'guidance_scale', 'num_inference_steps', 'max_sequence_length', 'generator'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:00<00:00, 18.76it/s] 100%|██████████| 28/28 [00:01<00:00, 27.12it/s] Inference took 1.20 seconds
Want to make some of these yourself?
Run this model