chenxwh/nova-t2i

Autoregressive Image Generation without Vector Quantization

Audio-based Lip Synchronization for Talking Head Video

Updated to OpenVoice v2: Versatile Instant Voice Cloning

A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding

Fast sdxl with higher quality

Convert LLM's coding to image generation

Depth estimation with faster inference speed, fewer parameters, and higher depth accuracy.

Extended video synthesis model that generates 128 frames

CogVLM2: Visual Language Models for Image and Video Understanding

CogVLM2: Visual Language Models for Image and Video Understanding

Generating Consistent Long Depth Sequences for Open-world Videos

Finer and Faster Text-to-Image Generation via Relay Diffusion

Diffusion-based Visual Foundation Model for High-quality Dense Prediction

Sharp Monocular Metric Depth in Less Than a Second

Efficient Visual Generation with Hybrid Autoregressive Transformer

Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis

Depth Any Video with Scalable Synthetic Data

DiT-based video generation model for generating high-quality videos in real-time

Minimal and Universal Control for Diffusion Transformer - demo for Subject-driven generation

High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training

Autoregressive Video Generation without Vector Quantization
Prediction
chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3IDxn4r2sdce5rm80cm10491r5nt4StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- prompt
- a shiba inu wearing a beret and black turtleneck.
- guidance_scale
- 5
- negative_prompt
- low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand
- num_diffusion_steps
- 25
- num_inference_steps
- 64
{ "prompt": "a shiba inu wearing a beret and black turtleneck.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", { input: { prompt: "a shiba inu wearing a beret and black turtleneck.", guidance_scale: 5, negative_prompt: "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", num_diffusion_steps: 25, num_inference_steps: 64 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", input={ "prompt": "a shiba inu wearing a beret and black turtleneck.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", "input": { "prompt": "a shiba inu wearing a beret and black turtleneck.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T12:14:08.344308Z", "created_at": "2024-12-27T12:12:53.745000Z", "data_removed": false, "error": null, "id": "xn4r2sdce5rm80cm10491r5nt4", "input": { "prompt": "a shiba inu wearing a beret and black turtleneck.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }, "logs": "Using seed: 20663\n 0%| | 0/64 [00:00<?, ?it/s]\n 2%|▏ | 1/64 [00:00<00:10, 5.97it/s]\n 3%|▎ | 2/64 [00:00<00:08, 7.05it/s]\n 5%|▍ | 3/64 [00:00<00:08, 7.43it/s]\n 6%|▋ | 4/64 [00:00<00:07, 7.52it/s]\n 8%|▊ | 5/64 [00:00<00:07, 7.64it/s]\n 9%|▉ | 6/64 [00:00<00:07, 7.71it/s]\n 11%|█ | 7/64 [00:00<00:07, 7.73it/s]\n 12%|█▎ | 8/64 [00:01<00:07, 7.80it/s]\n 14%|█▍ | 9/64 [00:01<00:07, 7.77it/s]\n 16%|█▌ | 10/64 [00:01<00:06, 7.78it/s]\n 17%|█▋ | 11/64 [00:01<00:06, 7.79it/s]\n 19%|█▉ | 12/64 [00:01<00:06, 7.80it/s]\n 20%|██ | 13/64 [00:01<00:06, 7.81it/s]\n 22%|██▏ | 14/64 [00:01<00:06, 7.80it/s]\n 23%|██▎ | 15/64 [00:01<00:06, 7.79it/s]\n 25%|██▌ | 16/64 [00:02<00:06, 7.79it/s]\n 27%|██▋ | 17/64 [00:02<00:06, 7.78it/s]\n 28%|██▊ | 18/64 [00:02<00:05, 7.78it/s]\n 30%|██▉ | 19/64 [00:02<00:05, 7.75it/s]\n 31%|███▏ | 20/64 [00:02<00:05, 7.74it/s]\n 33%|███▎ | 21/64 [00:02<00:05, 7.61it/s]\n 34%|███▍ | 22/64 [00:02<00:05, 7.50it/s]\n 36%|███▌ | 23/64 [00:03<00:05, 7.43it/s]\n 38%|███▊ | 24/64 [00:03<00:05, 7.35it/s]\n 39%|███▉ | 25/64 [00:03<00:05, 7.05it/s]\n 41%|████ | 26/64 [00:03<00:05, 7.12it/s]\n 42%|████▏ | 27/64 [00:03<00:05, 7.15it/s]\n 44%|████▍ | 28/64 [00:03<00:05, 7.14it/s]\n 45%|████▌ | 29/64 [00:03<00:04, 7.05it/s]\n 47%|████▋ | 30/64 [00:04<00:04, 6.92it/s]\n 48%|████▊ | 31/64 [00:04<00:04, 6.94it/s]\n 50%|█████ | 32/64 [00:04<00:04, 6.90it/s]\n 52%|█████▏ | 33/64 [00:04<00:04, 6.86it/s]\n 53%|█████▎ | 34/64 [00:04<00:04, 6.65it/s]\n 55%|█████▍ | 35/64 [00:04<00:04, 6.69it/s]\n 56%|█████▋ | 36/64 [00:04<00:04, 6.74it/s]\n 58%|█████▊ | 37/64 [00:05<00:04, 6.73it/s]\n 59%|█████▉ | 38/64 [00:05<00:03, 6.70it/s]\n 61%|██████ | 39/64 [00:05<00:03, 6.66it/s]\n 62%|██████▎ | 40/64 [00:05<00:03, 6.46it/s]\n 64%|██████▍ | 41/64 [00:05<00:03, 6.50it/s]\n 66%|██████▌ | 42/64 [00:05<00:03, 6.51it/s]\n 67%|██████▋ | 43/64 [00:06<00:03, 6.36it/s]\n 69%|██████▉ | 44/64 [00:06<00:03, 6.28it/s]\n 70%|███████ | 45/64 [00:06<00:03, 6.20it/s]\n 72%|███████▏ | 46/64 [00:06<00:02, 6.19it/s]\n 73%|███████▎ | 47/64 [00:06<00:02, 6.14it/s]\n 75%|███████▌ | 48/64 [00:06<00:02, 6.05it/s]\n 77%|███████▋ | 49/64 [00:07<00:02, 5.94it/s]\n 78%|███████▊ | 50/64 [00:07<00:02, 5.90it/s]\n 80%|███████▉ | 51/64 [00:07<00:02, 5.84it/s]\n 81%|████████▏ | 52/64 [00:07<00:02, 5.81it/s]\n 83%|████████▎ | 53/64 [00:07<00:01, 5.77it/s]\n 84%|████████▍ | 54/64 [00:07<00:01, 5.76it/s]\n 86%|████████▌ | 55/64 [00:08<00:01, 5.70it/s]\n 88%|████████▊ | 56/64 [00:08<00:01, 5.61it/s]\n 89%|████████▉ | 57/64 [00:08<00:01, 5.55it/s]\n 91%|█████████ | 58/64 [00:08<00:01, 5.54it/s]\n 92%|█████████▏| 59/64 [00:08<00:00, 5.49it/s]\n 94%|█████████▍| 60/64 [00:08<00:00, 5.34it/s]\n 95%|█████████▌| 61/64 [00:09<00:00, 5.26it/s]\n 97%|█████████▋| 62/64 [00:09<00:00, 5.22it/s]\n 98%|█████████▊| 63/64 [00:09<00:00, 5.15it/s]\n100%|██████████| 64/64 [00:09<00:00, 5.03it/s]\n100%|██████████| 64/64 [00:09<00:00, 6.53it/s]", "metrics": { "predict_time": 10.546732175, "total_time": 74.599308 }, "output": "https://replicate.delivery/xezq/TefYpvHO8mkQcEFQQY81mzLjS3kUbdAOo8NLR8Znf06ggJePB/out.png", "started_at": "2024-12-27T12:13:57.797576Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-3phkv55ne24qhxrvzt3oiwkt4a3vng5e7uvbyrtz4pzdekzt4axq", "get": "https://api.replicate.com/v1/predictions/xn4r2sdce5rm80cm10491r5nt4", "cancel": "https://api.replicate.com/v1/predictions/xn4r2sdce5rm80cm10491r5nt4/cancel" }, "version": "9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3" }
Generated inUsing seed: 20663 0%| | 0/64 [00:00<?, ?it/s] 2%|▏ | 1/64 [00:00<00:10, 5.97it/s] 3%|▎ | 2/64 [00:00<00:08, 7.05it/s] 5%|▍ | 3/64 [00:00<00:08, 7.43it/s] 6%|▋ | 4/64 [00:00<00:07, 7.52it/s] 8%|▊ | 5/64 [00:00<00:07, 7.64it/s] 9%|▉ | 6/64 [00:00<00:07, 7.71it/s] 11%|█ | 7/64 [00:00<00:07, 7.73it/s] 12%|█▎ | 8/64 [00:01<00:07, 7.80it/s] 14%|█▍ | 9/64 [00:01<00:07, 7.77it/s] 16%|█▌ | 10/64 [00:01<00:06, 7.78it/s] 17%|█▋ | 11/64 [00:01<00:06, 7.79it/s] 19%|█▉ | 12/64 [00:01<00:06, 7.80it/s] 20%|██ | 13/64 [00:01<00:06, 7.81it/s] 22%|██▏ | 14/64 [00:01<00:06, 7.80it/s] 23%|██▎ | 15/64 [00:01<00:06, 7.79it/s] 25%|██▌ | 16/64 [00:02<00:06, 7.79it/s] 27%|██▋ | 17/64 [00:02<00:06, 7.78it/s] 28%|██▊ | 18/64 [00:02<00:05, 7.78it/s] 30%|██▉ | 19/64 [00:02<00:05, 7.75it/s] 31%|███▏ | 20/64 [00:02<00:05, 7.74it/s] 33%|███▎ | 21/64 [00:02<00:05, 7.61it/s] 34%|███▍ | 22/64 [00:02<00:05, 7.50it/s] 36%|███▌ | 23/64 [00:03<00:05, 7.43it/s] 38%|███▊ | 24/64 [00:03<00:05, 7.35it/s] 39%|███▉ | 25/64 [00:03<00:05, 7.05it/s] 41%|████ | 26/64 [00:03<00:05, 7.12it/s] 42%|████▏ | 27/64 [00:03<00:05, 7.15it/s] 44%|████▍ | 28/64 [00:03<00:05, 7.14it/s] 45%|████▌ | 29/64 [00:03<00:04, 7.05it/s] 47%|████▋ | 30/64 [00:04<00:04, 6.92it/s] 48%|████▊ | 31/64 [00:04<00:04, 6.94it/s] 50%|█████ | 32/64 [00:04<00:04, 6.90it/s] 52%|█████▏ | 33/64 [00:04<00:04, 6.86it/s] 53%|█████▎ | 34/64 [00:04<00:04, 6.65it/s] 55%|█████▍ | 35/64 [00:04<00:04, 6.69it/s] 56%|█████▋ | 36/64 [00:04<00:04, 6.74it/s] 58%|█████▊ | 37/64 [00:05<00:04, 6.73it/s] 59%|█████▉ | 38/64 [00:05<00:03, 6.70it/s] 61%|██████ | 39/64 [00:05<00:03, 6.66it/s] 62%|██████▎ | 40/64 [00:05<00:03, 6.46it/s] 64%|██████▍ | 41/64 [00:05<00:03, 6.50it/s] 66%|██████▌ | 42/64 [00:05<00:03, 6.51it/s] 67%|██████▋ | 43/64 [00:06<00:03, 6.36it/s] 69%|██████▉ | 44/64 [00:06<00:03, 6.28it/s] 70%|███████ | 45/64 [00:06<00:03, 6.20it/s] 72%|███████▏ | 46/64 [00:06<00:02, 6.19it/s] 73%|███████▎ | 47/64 [00:06<00:02, 6.14it/s] 75%|███████▌ | 48/64 [00:06<00:02, 6.05it/s] 77%|███████▋ | 49/64 [00:07<00:02, 5.94it/s] 78%|███████▊ | 50/64 [00:07<00:02, 5.90it/s] 80%|███████▉ | 51/64 [00:07<00:02, 5.84it/s] 81%|████████▏ | 52/64 [00:07<00:02, 5.81it/s] 83%|████████▎ | 53/64 [00:07<00:01, 5.77it/s] 84%|████████▍ | 54/64 [00:07<00:01, 5.76it/s] 86%|████████▌ | 55/64 [00:08<00:01, 5.70it/s] 88%|████████▊ | 56/64 [00:08<00:01, 5.61it/s] 89%|████████▉ | 57/64 [00:08<00:01, 5.55it/s] 91%|█████████ | 58/64 [00:08<00:01, 5.54it/s] 92%|█████████▏| 59/64 [00:08<00:00, 5.49it/s] 94%|█████████▍| 60/64 [00:08<00:00, 5.34it/s] 95%|█████████▌| 61/64 [00:09<00:00, 5.26it/s] 97%|█████████▋| 62/64 [00:09<00:00, 5.22it/s] 98%|█████████▊| 63/64 [00:09<00:00, 5.15it/s] 100%|██████████| 64/64 [00:09<00:00, 5.03it/s] 100%|██████████| 64/64 [00:09<00:00, 6.53it/s]
Prediction
chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3IDe7z4kjkcg1rme0cm105skgnmhgStatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- prompt
- Two pandas in fluffy slippers and bathrobes, lazily munching on bamboo.
- guidance_scale
- 5
- negative_prompt
- low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand
- num_diffusion_steps
- 25
- num_inference_steps
- 64
{ "prompt": "Two pandas in fluffy slippers and bathrobes, lazily munching on bamboo.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", { input: { prompt: "Two pandas in fluffy slippers and bathrobes, lazily munching on bamboo.", guidance_scale: 5, negative_prompt: "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", num_diffusion_steps: 25, num_inference_steps: 64 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", input={ "prompt": "Two pandas in fluffy slippers and bathrobes, lazily munching on bamboo.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", "input": { "prompt": "Two pandas in fluffy slippers and bathrobes, lazily munching on bamboo.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T12:16:04.333798Z", "created_at": "2024-12-27T12:15:53.984000Z", "data_removed": false, "error": null, "id": "e7z4kjkcg1rme0cm105skgnmhg", "input": { "prompt": "Two pandas in fluffy slippers and bathrobes, lazily munching on bamboo.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }, "logs": "Using seed: 624\n 0%| | 0/64 [00:00<?, ?it/s]\n 2%|▏ | 1/64 [00:00<00:09, 6.98it/s]\n 3%|▎ | 2/64 [00:00<00:08, 7.53it/s]\n 5%|▍ | 3/64 [00:00<00:07, 7.69it/s]\n 6%|▋ | 4/64 [00:00<00:07, 7.81it/s]\n 8%|▊ | 5/64 [00:00<00:07, 7.72it/s]\n 9%|▉ | 6/64 [00:00<00:07, 7.74it/s]\n 11%|█ | 7/64 [00:00<00:07, 7.78it/s]\n 12%|█▎ | 8/64 [00:01<00:07, 7.76it/s]\n 14%|█▍ | 9/64 [00:01<00:07, 7.77it/s]\n 16%|█▌ | 10/64 [00:01<00:06, 7.77it/s]\n 17%|█▋ | 11/64 [00:01<00:06, 7.81it/s]\n 19%|█▉ | 12/64 [00:01<00:06, 7.80it/s]\n 20%|██ | 13/64 [00:01<00:06, 7.76it/s]\n 22%|██▏ | 14/64 [00:01<00:06, 7.76it/s]\n 23%|██▎ | 15/64 [00:01<00:06, 7.76it/s]\n 25%|██▌ | 16/64 [00:02<00:06, 7.76it/s]\n 27%|██▋ | 17/64 [00:02<00:06, 7.75it/s]\n 28%|██▊ | 18/64 [00:02<00:05, 7.73it/s]\n 30%|██▉ | 19/64 [00:02<00:05, 7.72it/s]\n 31%|███▏ | 20/64 [00:02<00:05, 7.70it/s]\n 33%|███▎ | 21/64 [00:02<00:05, 7.56it/s]\n 34%|███▍ | 22/64 [00:02<00:05, 7.46it/s]\n 36%|███▌ | 23/64 [00:03<00:05, 7.39it/s]\n 38%|███▊ | 24/64 [00:03<00:05, 7.33it/s]\n 39%|███▉ | 25/64 [00:03<00:05, 7.30it/s]\n 41%|████ | 26/64 [00:03<00:05, 7.28it/s]\n 42%|████▏ | 27/64 [00:03<00:05, 7.25it/s]\n 44%|████▍ | 28/64 [00:03<00:04, 7.20it/s]\n 45%|████▌ | 29/64 [00:03<00:04, 7.17it/s]\n 47%|████▋ | 30/64 [00:03<00:04, 7.11it/s]\n 48%|████▊ | 31/64 [00:04<00:04, 7.04it/s]\n 50%|█████ | 32/64 [00:04<00:04, 6.99it/s]\n 52%|█████▏ | 33/64 [00:04<00:04, 6.93it/s]\n 53%|█████▎ | 34/64 [00:04<00:04, 6.85it/s]\n 55%|█████▍ | 35/64 [00:04<00:04, 6.80it/s]\n 56%|█████▋ | 36/64 [00:04<00:04, 6.80it/s]\n 58%|█████▊ | 37/64 [00:05<00:03, 6.76it/s]\n 59%|█████▉ | 38/64 [00:05<00:03, 6.71it/s]\n 61%|██████ | 39/64 [00:05<00:03, 6.63it/s]\n 62%|██████▎ | 40/64 [00:05<00:03, 6.60it/s]\n 64%|██████▍ | 41/64 [00:05<00:03, 6.59it/s]\n 66%|██████▌ | 42/64 [00:05<00:03, 6.55it/s]\n 67%|██████▋ | 43/64 [00:05<00:03, 6.38it/s]\n 69%|██████▉ | 44/64 [00:06<00:03, 6.26it/s]\n 70%|███████ | 45/64 [00:06<00:03, 6.17it/s]\n 72%|███████▏ | 46/64 [00:06<00:02, 6.16it/s]\n 73%|███████▎ | 47/64 [00:06<00:02, 6.10it/s]\n 75%|███████▌ | 48/64 [00:06<00:02, 6.02it/s]\n 77%|███████▋ | 49/64 [00:06<00:02, 5.91it/s]\n 78%|███████▊ | 50/64 [00:07<00:02, 5.84it/s]\n 80%|███████▉ | 51/64 [00:07<00:02, 5.78it/s]\n 81%|████████▏ | 52/64 [00:07<00:02, 5.76it/s]\n 83%|████████▎ | 53/64 [00:07<00:01, 5.73it/s]\n 84%|████████▍ | 54/64 [00:07<00:01, 5.72it/s]\n 86%|████████▌ | 55/64 [00:08<00:01, 5.66it/s]\n 88%|████████▊ | 56/64 [00:08<00:01, 5.58it/s]\n 89%|████████▉ | 57/64 [00:08<00:01, 5.53it/s]\n 91%|█████████ | 58/64 [00:08<00:01, 5.51it/s]\n 92%|█████████▏| 59/64 [00:08<00:00, 5.47it/s]\n 94%|█████████▍| 60/64 [00:08<00:00, 5.31it/s]\n 95%|█████████▌| 61/64 [00:09<00:00, 5.23it/s]\n 97%|█████████▋| 62/64 [00:09<00:00, 5.18it/s]\n 98%|█████████▊| 63/64 [00:09<00:00, 5.10it/s]\n100%|██████████| 64/64 [00:09<00:00, 4.99it/s]\n100%|██████████| 64/64 [00:09<00:00, 6.55it/s]", "metrics": { "predict_time": 10.343219734, "total_time": 10.349798 }, "output": "https://replicate.delivery/xezq/CVi5So1iVEJxBxd5DnAwwU8vo24wr1kENz8YYbvXqPChMxfJA/out.png", "started_at": "2024-12-27T12:15:53.990579Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-bced6a2bsurx3jihozdreyjdnywrh7ptpsqgngw5oqaxxyqcmjxa", "get": "https://api.replicate.com/v1/predictions/e7z4kjkcg1rme0cm105skgnmhg", "cancel": "https://api.replicate.com/v1/predictions/e7z4kjkcg1rme0cm105skgnmhg/cancel" }, "version": "9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3" }
Generated inUsing seed: 624 0%| | 0/64 [00:00<?, ?it/s] 2%|▏ | 1/64 [00:00<00:09, 6.98it/s] 3%|▎ | 2/64 [00:00<00:08, 7.53it/s] 5%|▍ | 3/64 [00:00<00:07, 7.69it/s] 6%|▋ | 4/64 [00:00<00:07, 7.81it/s] 8%|▊ | 5/64 [00:00<00:07, 7.72it/s] 9%|▉ | 6/64 [00:00<00:07, 7.74it/s] 11%|█ | 7/64 [00:00<00:07, 7.78it/s] 12%|█▎ | 8/64 [00:01<00:07, 7.76it/s] 14%|█▍ | 9/64 [00:01<00:07, 7.77it/s] 16%|█▌ | 10/64 [00:01<00:06, 7.77it/s] 17%|█▋ | 11/64 [00:01<00:06, 7.81it/s] 19%|█▉ | 12/64 [00:01<00:06, 7.80it/s] 20%|██ | 13/64 [00:01<00:06, 7.76it/s] 22%|██▏ | 14/64 [00:01<00:06, 7.76it/s] 23%|██▎ | 15/64 [00:01<00:06, 7.76it/s] 25%|██▌ | 16/64 [00:02<00:06, 7.76it/s] 27%|██▋ | 17/64 [00:02<00:06, 7.75it/s] 28%|██▊ | 18/64 [00:02<00:05, 7.73it/s] 30%|██▉ | 19/64 [00:02<00:05, 7.72it/s] 31%|███▏ | 20/64 [00:02<00:05, 7.70it/s] 33%|███▎ | 21/64 [00:02<00:05, 7.56it/s] 34%|███▍ | 22/64 [00:02<00:05, 7.46it/s] 36%|███▌ | 23/64 [00:03<00:05, 7.39it/s] 38%|███▊ | 24/64 [00:03<00:05, 7.33it/s] 39%|███▉ | 25/64 [00:03<00:05, 7.30it/s] 41%|████ | 26/64 [00:03<00:05, 7.28it/s] 42%|████▏ | 27/64 [00:03<00:05, 7.25it/s] 44%|████▍ | 28/64 [00:03<00:04, 7.20it/s] 45%|████▌ | 29/64 [00:03<00:04, 7.17it/s] 47%|████▋ | 30/64 [00:03<00:04, 7.11it/s] 48%|████▊ | 31/64 [00:04<00:04, 7.04it/s] 50%|█████ | 32/64 [00:04<00:04, 6.99it/s] 52%|█████▏ | 33/64 [00:04<00:04, 6.93it/s] 53%|█████▎ | 34/64 [00:04<00:04, 6.85it/s] 55%|█████▍ | 35/64 [00:04<00:04, 6.80it/s] 56%|█████▋ | 36/64 [00:04<00:04, 6.80it/s] 58%|█████▊ | 37/64 [00:05<00:03, 6.76it/s] 59%|█████▉ | 38/64 [00:05<00:03, 6.71it/s] 61%|██████ | 39/64 [00:05<00:03, 6.63it/s] 62%|██████▎ | 40/64 [00:05<00:03, 6.60it/s] 64%|██████▍ | 41/64 [00:05<00:03, 6.59it/s] 66%|██████▌ | 42/64 [00:05<00:03, 6.55it/s] 67%|██████▋ | 43/64 [00:05<00:03, 6.38it/s] 69%|██████▉ | 44/64 [00:06<00:03, 6.26it/s] 70%|███████ | 45/64 [00:06<00:03, 6.17it/s] 72%|███████▏ | 46/64 [00:06<00:02, 6.16it/s] 73%|███████▎ | 47/64 [00:06<00:02, 6.10it/s] 75%|███████▌ | 48/64 [00:06<00:02, 6.02it/s] 77%|███████▋ | 49/64 [00:06<00:02, 5.91it/s] 78%|███████▊ | 50/64 [00:07<00:02, 5.84it/s] 80%|███████▉ | 51/64 [00:07<00:02, 5.78it/s] 81%|████████▏ | 52/64 [00:07<00:02, 5.76it/s] 83%|████████▎ | 53/64 [00:07<00:01, 5.73it/s] 84%|████████▍ | 54/64 [00:07<00:01, 5.72it/s] 86%|████████▌ | 55/64 [00:08<00:01, 5.66it/s] 88%|████████▊ | 56/64 [00:08<00:01, 5.58it/s] 89%|████████▉ | 57/64 [00:08<00:01, 5.53it/s] 91%|█████████ | 58/64 [00:08<00:01, 5.51it/s] 92%|█████████▏| 59/64 [00:08<00:00, 5.47it/s] 94%|█████████▍| 60/64 [00:08<00:00, 5.31it/s] 95%|█████████▌| 61/64 [00:09<00:00, 5.23it/s] 97%|█████████▋| 62/64 [00:09<00:00, 5.18it/s] 98%|█████████▊| 63/64 [00:09<00:00, 5.10it/s] 100%|██████████| 64/64 [00:09<00:00, 4.99it/s] 100%|██████████| 64/64 [00:09<00:00, 6.55it/s]
Prediction
chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3IDa51pc17dcsrma0cm106bvfteb0StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- prompt
- A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.
- guidance_scale
- 5
- negative_prompt
- low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand
- num_diffusion_steps
- 25
- num_inference_steps
- 64
{ "prompt": "A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", { input: { prompt: "A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.", guidance_scale: 5, negative_prompt: "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", num_diffusion_steps: 25, num_inference_steps: 64 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", input={ "prompt": "A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", "input": { "prompt": "A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T12:17:43.102833Z", "created_at": "2024-12-27T12:17:32.518000Z", "data_removed": false, "error": null, "id": "a51pc17dcsrma0cm106bvfteb0", "input": { "prompt": "A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }, "logs": "Using seed: 17826\n 0%| | 0/64 [00:00<?, ?it/s]\n 2%|▏ | 1/64 [00:00<00:10, 6.02it/s]\n 3%|▎ | 2/64 [00:00<00:08, 7.10it/s]\n 5%|▍ | 3/64 [00:00<00:08, 7.46it/s]\n 6%|▋ | 4/64 [00:00<00:07, 7.58it/s]\n 8%|▊ | 5/64 [00:00<00:07, 7.66it/s]\n 9%|▉ | 6/64 [00:00<00:07, 7.71it/s]\n 11%|█ | 7/64 [00:00<00:07, 7.67it/s]\n 12%|█▎ | 8/64 [00:01<00:07, 7.73it/s]\n 14%|█▍ | 9/64 [00:01<00:07, 7.74it/s]\n 16%|█▌ | 10/64 [00:01<00:06, 7.76it/s]\n 17%|█▋ | 11/64 [00:01<00:06, 7.76it/s]\n 19%|█▉ | 12/64 [00:01<00:06, 7.75it/s]\n 20%|██ | 13/64 [00:01<00:06, 7.75it/s]\n 22%|██▏ | 14/64 [00:01<00:06, 7.77it/s]\n 23%|██▎ | 15/64 [00:01<00:06, 7.76it/s]\n 25%|██▌ | 16/64 [00:02<00:06, 7.75it/s]\n 27%|██▋ | 17/64 [00:02<00:06, 7.76it/s]\n 28%|██▊ | 18/64 [00:02<00:05, 7.75it/s]\n 30%|██▉ | 19/64 [00:02<00:05, 7.73it/s]\n 31%|███▏ | 20/64 [00:02<00:05, 7.65it/s]\n 33%|███▎ | 21/64 [00:02<00:05, 7.53it/s]\n 34%|███▍ | 22/64 [00:02<00:05, 7.45it/s]\n 36%|███▌ | 23/64 [00:03<00:05, 7.38it/s]\n 38%|███▊ | 24/64 [00:03<00:05, 7.33it/s]\n 39%|███▉ | 25/64 [00:03<00:05, 7.30it/s]\n 41%|████ | 26/64 [00:03<00:05, 7.28it/s]\n 42%|████▏ | 27/64 [00:03<00:05, 7.26it/s]\n 44%|████▍ | 28/64 [00:03<00:04, 7.22it/s]\n 45%|████▌ | 29/64 [00:03<00:04, 7.20it/s]\n 47%|████▋ | 30/64 [00:04<00:04, 7.12it/s]\n 48%|████▊ | 31/64 [00:04<00:04, 7.07it/s]\n 50%|█████ | 32/64 [00:04<00:04, 7.02it/s]\n 52%|█████▏ | 33/64 [00:04<00:04, 6.97it/s]\n 53%|█████▎ | 34/64 [00:04<00:04, 6.88it/s]\n 55%|█████▍ | 35/64 [00:04<00:04, 6.85it/s]\n 56%|█████▋ | 36/64 [00:04<00:04, 6.84it/s]\n 58%|█████▊ | 37/64 [00:05<00:03, 6.78it/s]\n 59%|█████▉ | 38/64 [00:05<00:03, 6.75it/s]\n 61%|██████ | 39/64 [00:05<00:03, 6.68it/s]\n 62%|██████▎ | 40/64 [00:05<00:03, 6.62it/s]\n 64%|██████▍ | 41/64 [00:05<00:03, 6.62it/s]\n 66%|██████▌ | 42/64 [00:05<00:03, 6.58it/s]\n 67%|██████▋ | 43/64 [00:05<00:03, 6.40it/s]\n 69%|██████▉ | 44/64 [00:06<00:03, 6.31it/s]\n 70%|███████ | 45/64 [00:06<00:03, 6.22it/s]\n 72%|███████▏ | 46/64 [00:06<00:02, 6.21it/s]\n 73%|███████▎ | 47/64 [00:06<00:02, 6.15it/s]\n 75%|███████▌ | 48/64 [00:06<00:02, 6.07it/s]\n 77%|███████▋ | 49/64 [00:06<00:02, 5.94it/s]\n 78%|███████▊ | 50/64 [00:07<00:02, 5.88it/s]\n 80%|███████▉ | 51/64 [00:07<00:02, 5.81it/s]\n 81%|████████▏ | 52/64 [00:07<00:02, 5.80it/s]\n 83%|████████▎ | 53/64 [00:07<00:01, 5.76it/s]\n 84%|████████▍ | 54/64 [00:07<00:01, 5.76it/s]\n 86%|████████▌ | 55/64 [00:08<00:01, 5.72it/s]\n 88%|████████▊ | 56/64 [00:08<00:01, 5.62it/s]\n 89%|████████▉ | 57/64 [00:08<00:01, 5.56it/s]\n 91%|█████████ | 58/64 [00:08<00:01, 5.54it/s]\n 92%|█████████▏| 59/64 [00:08<00:00, 5.49it/s]\n 94%|█████████▍| 60/64 [00:08<00:00, 5.33it/s]\n 95%|█████████▌| 61/64 [00:09<00:00, 5.25it/s]\n 97%|█████████▋| 62/64 [00:09<00:00, 5.20it/s]\n 98%|█████████▊| 63/64 [00:09<00:00, 5.11it/s]\n100%|██████████| 64/64 [00:09<00:00, 5.00it/s]\n100%|██████████| 64/64 [00:09<00:00, 6.56it/s]", "metrics": { "predict_time": 10.574440888, "total_time": 10.584833 }, "output": "https://replicate.delivery/xezq/xK7f5qakOPQIGaDgpf7h4IPj2pky1nrcXJ6iOch2aWpnzEfnA/out.png", "started_at": "2024-12-27T12:17:32.528392Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-7ojrstsxjgkepvstf5igbgl334h4q4vuzlb5bupvt3ds4amiu7na", "get": "https://api.replicate.com/v1/predictions/a51pc17dcsrma0cm106bvfteb0", "cancel": "https://api.replicate.com/v1/predictions/a51pc17dcsrma0cm106bvfteb0/cancel" }, "version": "9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3" }
Generated inUsing seed: 17826 0%| | 0/64 [00:00<?, ?it/s] 2%|▏ | 1/64 [00:00<00:10, 6.02it/s] 3%|▎ | 2/64 [00:00<00:08, 7.10it/s] 5%|▍ | 3/64 [00:00<00:08, 7.46it/s] 6%|▋ | 4/64 [00:00<00:07, 7.58it/s] 8%|▊ | 5/64 [00:00<00:07, 7.66it/s] 9%|▉ | 6/64 [00:00<00:07, 7.71it/s] 11%|█ | 7/64 [00:00<00:07, 7.67it/s] 12%|█▎ | 8/64 [00:01<00:07, 7.73it/s] 14%|█▍ | 9/64 [00:01<00:07, 7.74it/s] 16%|█▌ | 10/64 [00:01<00:06, 7.76it/s] 17%|█▋ | 11/64 [00:01<00:06, 7.76it/s] 19%|█▉ | 12/64 [00:01<00:06, 7.75it/s] 20%|██ | 13/64 [00:01<00:06, 7.75it/s] 22%|██▏ | 14/64 [00:01<00:06, 7.77it/s] 23%|██▎ | 15/64 [00:01<00:06, 7.76it/s] 25%|██▌ | 16/64 [00:02<00:06, 7.75it/s] 27%|██▋ | 17/64 [00:02<00:06, 7.76it/s] 28%|██▊ | 18/64 [00:02<00:05, 7.75it/s] 30%|██▉ | 19/64 [00:02<00:05, 7.73it/s] 31%|███▏ | 20/64 [00:02<00:05, 7.65it/s] 33%|███▎ | 21/64 [00:02<00:05, 7.53it/s] 34%|███▍ | 22/64 [00:02<00:05, 7.45it/s] 36%|███▌ | 23/64 [00:03<00:05, 7.38it/s] 38%|███▊ | 24/64 [00:03<00:05, 7.33it/s] 39%|███▉ | 25/64 [00:03<00:05, 7.30it/s] 41%|████ | 26/64 [00:03<00:05, 7.28it/s] 42%|████▏ | 27/64 [00:03<00:05, 7.26it/s] 44%|████▍ | 28/64 [00:03<00:04, 7.22it/s] 45%|████▌ | 29/64 [00:03<00:04, 7.20it/s] 47%|████▋ | 30/64 [00:04<00:04, 7.12it/s] 48%|████▊ | 31/64 [00:04<00:04, 7.07it/s] 50%|█████ | 32/64 [00:04<00:04, 7.02it/s] 52%|█████▏ | 33/64 [00:04<00:04, 6.97it/s] 53%|█████▎ | 34/64 [00:04<00:04, 6.88it/s] 55%|█████▍ | 35/64 [00:04<00:04, 6.85it/s] 56%|█████▋ | 36/64 [00:04<00:04, 6.84it/s] 58%|█████▊ | 37/64 [00:05<00:03, 6.78it/s] 59%|█████▉ | 38/64 [00:05<00:03, 6.75it/s] 61%|██████ | 39/64 [00:05<00:03, 6.68it/s] 62%|██████▎ | 40/64 [00:05<00:03, 6.62it/s] 64%|██████▍ | 41/64 [00:05<00:03, 6.62it/s] 66%|██████▌ | 42/64 [00:05<00:03, 6.58it/s] 67%|██████▋ | 43/64 [00:05<00:03, 6.40it/s] 69%|██████▉ | 44/64 [00:06<00:03, 6.31it/s] 70%|███████ | 45/64 [00:06<00:03, 6.22it/s] 72%|███████▏ | 46/64 [00:06<00:02, 6.21it/s] 73%|███████▎ | 47/64 [00:06<00:02, 6.15it/s] 75%|███████▌ | 48/64 [00:06<00:02, 6.07it/s] 77%|███████▋ | 49/64 [00:06<00:02, 5.94it/s] 78%|███████▊ | 50/64 [00:07<00:02, 5.88it/s] 80%|███████▉ | 51/64 [00:07<00:02, 5.81it/s] 81%|████████▏ | 52/64 [00:07<00:02, 5.80it/s] 83%|████████▎ | 53/64 [00:07<00:01, 5.76it/s] 84%|████████▍ | 54/64 [00:07<00:01, 5.76it/s] 86%|████████▌ | 55/64 [00:08<00:01, 5.72it/s] 88%|████████▊ | 56/64 [00:08<00:01, 5.62it/s] 89%|████████▉ | 57/64 [00:08<00:01, 5.56it/s] 91%|█████████ | 58/64 [00:08<00:01, 5.54it/s] 92%|█████████▏| 59/64 [00:08<00:00, 5.49it/s] 94%|█████████▍| 60/64 [00:08<00:00, 5.33it/s] 95%|█████████▌| 61/64 [00:09<00:00, 5.25it/s] 97%|█████████▋| 62/64 [00:09<00:00, 5.20it/s] 98%|█████████▊| 63/64 [00:09<00:00, 5.11it/s] 100%|██████████| 64/64 [00:09<00:00, 5.00it/s] 100%|██████████| 64/64 [00:09<00:00, 6.56it/s]
Prediction
chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3ID6kw96fjq3hrma0cm106va82mr4StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- prompt
- a digital artwork of a cat styled in a whimsical fashion. The overall vibe is quirky and artistic.
- guidance_scale
- 5
- negative_prompt
- low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand
- num_diffusion_steps
- 25
- num_inference_steps
- 64
{ "prompt": "a digital artwork of a cat styled in a whimsical fashion. The overall vibe is quirky and artistic.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", { input: { prompt: "a digital artwork of a cat styled in a whimsical fashion. The overall vibe is quirky and artistic.", guidance_scale: 5, negative_prompt: "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", num_diffusion_steps: 25, num_inference_steps: 64 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", input={ "prompt": "a digital artwork of a cat styled in a whimsical fashion. The overall vibe is quirky and artistic.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", "input": { "prompt": "a digital artwork of a cat styled in a whimsical fashion. The overall vibe is quirky and artistic.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T12:18:09.915622Z", "created_at": "2024-12-27T12:17:59.580000Z", "data_removed": false, "error": null, "id": "6kw96fjq3hrma0cm106va82mr4", "input": { "prompt": "a digital artwork of a cat styled in a whimsical fashion. The overall vibe is quirky and artistic.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }, "logs": "Using seed: 3448\n 0%| | 0/64 [00:00<?, ?it/s]\n 2%|▏ | 1/64 [00:00<00:09, 6.92it/s]\n 3%|▎ | 2/64 [00:00<00:08, 7.49it/s]\n 5%|▍ | 3/64 [00:00<00:07, 7.70it/s]\n 6%|▋ | 4/64 [00:00<00:07, 7.77it/s]\n 8%|▊ | 5/64 [00:00<00:07, 7.79it/s]\n 9%|▉ | 6/64 [00:00<00:07, 7.78it/s]\n 11%|█ | 7/64 [00:00<00:07, 7.79it/s]\n 12%|█▎ | 8/64 [00:01<00:07, 7.76it/s]\n 14%|█▍ | 9/64 [00:01<00:07, 7.74it/s]\n 16%|█▌ | 10/64 [00:01<00:06, 7.75it/s]\n 17%|█▋ | 11/64 [00:01<00:06, 7.74it/s]\n 19%|█▉ | 12/64 [00:01<00:06, 7.75it/s]\n 20%|██ | 13/64 [00:01<00:06, 7.73it/s]\n 22%|██▏ | 14/64 [00:01<00:06, 7.74it/s]\n 23%|██▎ | 15/64 [00:01<00:06, 7.77it/s]\n 25%|██▌ | 16/64 [00:02<00:06, 7.76it/s]\n 27%|██▋ | 17/64 [00:02<00:06, 7.74it/s]\n 28%|██▊ | 18/64 [00:02<00:05, 7.72it/s]\n 30%|██▉ | 19/64 [00:02<00:05, 7.69it/s]\n 31%|███▏ | 20/64 [00:02<00:05, 7.66it/s]\n 33%|███▎ | 21/64 [00:02<00:05, 7.51it/s]\n 34%|███▍ | 22/64 [00:02<00:05, 7.37it/s]\n 36%|███▌ | 23/64 [00:03<00:05, 7.31it/s]\n 38%|███▊ | 24/64 [00:03<00:05, 7.28it/s]\n 39%|███▉ | 25/64 [00:03<00:05, 7.17it/s]\n 41%|████ | 26/64 [00:03<00:05, 7.18it/s]\n 42%|████▏ | 27/64 [00:03<00:05, 7.18it/s]\n 44%|████▍ | 28/64 [00:03<00:05, 7.13it/s]\n 45%|████▌ | 29/64 [00:03<00:04, 7.10it/s]\n 47%|████▋ | 30/64 [00:04<00:04, 7.04it/s]\n 48%|████▊ | 31/64 [00:04<00:04, 7.00it/s]\n 50%|█████ | 32/64 [00:04<00:04, 6.96it/s]\n 52%|█████▏ | 33/64 [00:04<00:04, 6.90it/s]\n 53%|█████▎ | 34/64 [00:04<00:04, 6.88it/s]\n 55%|█████▍ | 35/64 [00:04<00:04, 6.81it/s]\n 56%|█████▋ | 36/64 [00:04<00:04, 6.80it/s]\n 58%|█████▊ | 37/64 [00:05<00:03, 6.76it/s]\n 59%|█████▉ | 38/64 [00:05<00:03, 6.72it/s]\n 61%|██████ | 39/64 [00:05<00:03, 6.63it/s]\n 62%|██████▎ | 40/64 [00:05<00:03, 6.58it/s]\n 64%|██████▍ | 41/64 [00:05<00:03, 6.56it/s]\n 66%|██████▌ | 42/64 [00:05<00:03, 6.53it/s]\n 67%|██████▋ | 43/64 [00:05<00:03, 6.33it/s]\n 69%|██████▉ | 44/64 [00:06<00:03, 6.24it/s]\n 70%|███████ | 45/64 [00:06<00:03, 6.15it/s]\n 72%|███████▏ | 46/64 [00:06<00:02, 6.14it/s]\n 73%|███████▎ | 47/64 [00:06<00:02, 6.08it/s]\n 75%|███████▌ | 48/64 [00:06<00:02, 5.99it/s]\n 77%|███████▋ | 49/64 [00:06<00:02, 5.88it/s]\n 78%|███████▊ | 50/64 [00:07<00:02, 5.83it/s]\n 80%|███████▉ | 51/64 [00:07<00:02, 5.77it/s]\n 81%|████████▏ | 52/64 [00:07<00:02, 5.75it/s]\n 83%|████████▎ | 53/64 [00:07<00:01, 5.72it/s]\n 84%|████████▍ | 54/64 [00:07<00:01, 5.70it/s]\n 86%|████████▌ | 55/64 [00:08<00:01, 5.64it/s]\n 88%|████████▊ | 56/64 [00:08<00:01, 5.56it/s]\n 89%|████████▉ | 57/64 [00:08<00:01, 5.52it/s]\n 91%|█████████ | 58/64 [00:08<00:01, 5.50it/s]\n 92%|█████████▏| 59/64 [00:08<00:00, 5.47it/s]\n 94%|█████████▍| 60/64 [00:08<00:00, 5.31it/s]\n 95%|█████████▌| 61/64 [00:09<00:00, 5.22it/s]\n 97%|█████████▋| 62/64 [00:09<00:00, 5.17it/s]\n 98%|█████████▊| 63/64 [00:09<00:00, 5.09it/s]\n100%|██████████| 64/64 [00:09<00:00, 4.97it/s]\n100%|██████████| 64/64 [00:09<00:00, 6.53it/s]", "metrics": { "predict_time": 10.327737874, "total_time": 10.335622 }, "output": "https://replicate.delivery/xezq/9MyfYocL9TyMYi2qwCMovqNaiSK0oATcjufUeK22hrXCoJePB/out.png", "started_at": "2024-12-27T12:17:59.587884Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-jrm2kj5iece4k2sy363skrq4da22vscmlr5jkucw2l5jnpl5yxpq", "get": "https://api.replicate.com/v1/predictions/6kw96fjq3hrma0cm106va82mr4", "cancel": "https://api.replicate.com/v1/predictions/6kw96fjq3hrma0cm106va82mr4/cancel" }, "version": "9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3" }
Generated inUsing seed: 3448 0%| | 0/64 [00:00<?, ?it/s] 2%|▏ | 1/64 [00:00<00:09, 6.92it/s] 3%|▎ | 2/64 [00:00<00:08, 7.49it/s] 5%|▍ | 3/64 [00:00<00:07, 7.70it/s] 6%|▋ | 4/64 [00:00<00:07, 7.77it/s] 8%|▊ | 5/64 [00:00<00:07, 7.79it/s] 9%|▉ | 6/64 [00:00<00:07, 7.78it/s] 11%|█ | 7/64 [00:00<00:07, 7.79it/s] 12%|█▎ | 8/64 [00:01<00:07, 7.76it/s] 14%|█▍ | 9/64 [00:01<00:07, 7.74it/s] 16%|█▌ | 10/64 [00:01<00:06, 7.75it/s] 17%|█▋ | 11/64 [00:01<00:06, 7.74it/s] 19%|█▉ | 12/64 [00:01<00:06, 7.75it/s] 20%|██ | 13/64 [00:01<00:06, 7.73it/s] 22%|██▏ | 14/64 [00:01<00:06, 7.74it/s] 23%|██▎ | 15/64 [00:01<00:06, 7.77it/s] 25%|██▌ | 16/64 [00:02<00:06, 7.76it/s] 27%|██▋ | 17/64 [00:02<00:06, 7.74it/s] 28%|██▊ | 18/64 [00:02<00:05, 7.72it/s] 30%|██▉ | 19/64 [00:02<00:05, 7.69it/s] 31%|███▏ | 20/64 [00:02<00:05, 7.66it/s] 33%|███▎ | 21/64 [00:02<00:05, 7.51it/s] 34%|███▍ | 22/64 [00:02<00:05, 7.37it/s] 36%|███▌ | 23/64 [00:03<00:05, 7.31it/s] 38%|███▊ | 24/64 [00:03<00:05, 7.28it/s] 39%|███▉ | 25/64 [00:03<00:05, 7.17it/s] 41%|████ | 26/64 [00:03<00:05, 7.18it/s] 42%|████▏ | 27/64 [00:03<00:05, 7.18it/s] 44%|████▍ | 28/64 [00:03<00:05, 7.13it/s] 45%|████▌ | 29/64 [00:03<00:04, 7.10it/s] 47%|████▋ | 30/64 [00:04<00:04, 7.04it/s] 48%|████▊ | 31/64 [00:04<00:04, 7.00it/s] 50%|█████ | 32/64 [00:04<00:04, 6.96it/s] 52%|█████▏ | 33/64 [00:04<00:04, 6.90it/s] 53%|█████▎ | 34/64 [00:04<00:04, 6.88it/s] 55%|█████▍ | 35/64 [00:04<00:04, 6.81it/s] 56%|█████▋ | 36/64 [00:04<00:04, 6.80it/s] 58%|█████▊ | 37/64 [00:05<00:03, 6.76it/s] 59%|█████▉ | 38/64 [00:05<00:03, 6.72it/s] 61%|██████ | 39/64 [00:05<00:03, 6.63it/s] 62%|██████▎ | 40/64 [00:05<00:03, 6.58it/s] 64%|██████▍ | 41/64 [00:05<00:03, 6.56it/s] 66%|██████▌ | 42/64 [00:05<00:03, 6.53it/s] 67%|██████▋ | 43/64 [00:05<00:03, 6.33it/s] 69%|██████▉ | 44/64 [00:06<00:03, 6.24it/s] 70%|███████ | 45/64 [00:06<00:03, 6.15it/s] 72%|███████▏ | 46/64 [00:06<00:02, 6.14it/s] 73%|███████▎ | 47/64 [00:06<00:02, 6.08it/s] 75%|███████▌ | 48/64 [00:06<00:02, 5.99it/s] 77%|███████▋ | 49/64 [00:06<00:02, 5.88it/s] 78%|███████▊ | 50/64 [00:07<00:02, 5.83it/s] 80%|███████▉ | 51/64 [00:07<00:02, 5.77it/s] 81%|████████▏ | 52/64 [00:07<00:02, 5.75it/s] 83%|████████▎ | 53/64 [00:07<00:01, 5.72it/s] 84%|████████▍ | 54/64 [00:07<00:01, 5.70it/s] 86%|████████▌ | 55/64 [00:08<00:01, 5.64it/s] 88%|████████▊ | 56/64 [00:08<00:01, 5.56it/s] 89%|████████▉ | 57/64 [00:08<00:01, 5.52it/s] 91%|█████████ | 58/64 [00:08<00:01, 5.50it/s] 92%|█████████▏| 59/64 [00:08<00:00, 5.47it/s] 94%|█████████▍| 60/64 [00:08<00:00, 5.31it/s] 95%|█████████▌| 61/64 [00:09<00:00, 5.22it/s] 97%|█████████▋| 62/64 [00:09<00:00, 5.17it/s] 98%|█████████▊| 63/64 [00:09<00:00, 5.09it/s] 100%|██████████| 64/64 [00:09<00:00, 4.97it/s] 100%|██████████| 64/64 [00:09<00:00, 6.53it/s]
Prediction
chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3IDswqxm8959xrme0cm107ayzam3rStatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- prompt
- A dragon perched majestically on a craggy, smoke-wreathed mountain.
- guidance_scale
- 5
- negative_prompt
- low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand
- num_diffusion_steps
- 25
- num_inference_steps
- 64
{ "prompt": "A dragon perched majestically on a craggy, smoke-wreathed mountain.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", { input: { prompt: "A dragon perched majestically on a craggy, smoke-wreathed mountain.", guidance_scale: 5, negative_prompt: "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", num_diffusion_steps: 25, num_inference_steps: 64 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", input={ "prompt": "A dragon perched majestically on a craggy, smoke-wreathed mountain.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", "input": { "prompt": "A dragon perched majestically on a craggy, smoke-wreathed mountain.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T12:19:02.888444Z", "created_at": "2024-12-27T12:18:52.367000Z", "data_removed": false, "error": null, "id": "swqxm8959xrme0cm107ayzam3r", "input": { "prompt": "A dragon perched majestically on a craggy, smoke-wreathed mountain.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }, "logs": "Using seed: 22808\n 0%| | 0/64 [00:00<?, ?it/s]\n 2%|▏ | 1/64 [00:00<00:09, 6.93it/s]\n 3%|▎ | 2/64 [00:00<00:08, 7.41it/s]\n 5%|▍ | 3/64 [00:00<00:07, 7.66it/s]\n 6%|▋ | 4/64 [00:00<00:07, 7.70it/s]\n 8%|▊ | 5/64 [00:00<00:07, 7.70it/s]\n 9%|▉ | 6/64 [00:00<00:07, 7.68it/s]\n 11%|█ | 7/64 [00:00<00:07, 7.68it/s]\n 12%|█▎ | 8/64 [00:01<00:07, 7.68it/s]\n 14%|█▍ | 9/64 [00:01<00:07, 7.66it/s]\n 16%|█▌ | 10/64 [00:01<00:07, 7.67it/s]\n 17%|█▋ | 11/64 [00:01<00:06, 7.65it/s]\n 19%|█▉ | 12/64 [00:01<00:06, 7.65it/s]\n 20%|██ | 13/64 [00:01<00:06, 7.63it/s]\n 22%|██▏ | 14/64 [00:01<00:06, 7.62it/s]\n 23%|██▎ | 15/64 [00:01<00:06, 7.60it/s]\n 25%|██▌ | 16/64 [00:02<00:06, 7.60it/s]\n 27%|██▋ | 17/64 [00:02<00:06, 7.62it/s]\n 28%|██▊ | 18/64 [00:02<00:06, 7.60it/s]\n 30%|██▉ | 19/64 [00:02<00:05, 7.57it/s]\n 31%|███▏ | 20/64 [00:02<00:05, 7.56it/s]\n 33%|███▎ | 21/64 [00:02<00:05, 7.42it/s]\n 34%|███▍ | 22/64 [00:02<00:05, 7.31it/s]\n 36%|███▌ | 23/64 [00:03<00:05, 7.24it/s]\n 38%|███▊ | 24/64 [00:03<00:05, 7.18it/s]\n 39%|███▉ | 25/64 [00:03<00:05, 7.14it/s]\n 41%|████ | 26/64 [00:03<00:05, 7.12it/s]\n 42%|████▏ | 27/64 [00:03<00:05, 7.09it/s]\n 44%|████▍ | 28/64 [00:03<00:05, 7.06it/s]\n 45%|████▌ | 29/64 [00:03<00:04, 7.01it/s]\n 47%|████▋ | 30/64 [00:04<00:04, 6.96it/s]\n 48%|████▊ | 31/64 [00:04<00:04, 6.90it/s]\n 50%|█████ | 32/64 [00:04<00:04, 6.85it/s]\n 52%|█████▏ | 33/64 [00:04<00:04, 6.80it/s]\n 53%|█████▎ | 34/64 [00:04<00:04, 6.76it/s]\n 55%|█████▍ | 35/64 [00:04<00:04, 6.71it/s]\n 56%|█████▋ | 36/64 [00:04<00:04, 6.70it/s]\n 58%|█████▊ | 37/64 [00:05<00:04, 6.66it/s]\n 59%|█████▉ | 38/64 [00:05<00:03, 6.61it/s]\n 61%|██████ | 39/64 [00:05<00:03, 6.53it/s]\n 62%|██████▎ | 40/64 [00:05<00:03, 6.49it/s]\n 64%|██████▍ | 41/64 [00:05<00:03, 6.46it/s]\n 66%|██████▌ | 42/64 [00:05<00:03, 6.42it/s]\n 67%|██████▋ | 43/64 [00:06<00:03, 6.26it/s]\n 69%|██████▉ | 44/64 [00:06<00:03, 6.14it/s]\n 70%|███████ | 45/64 [00:06<00:03, 6.06it/s]\n 72%|███████▏ | 46/64 [00:06<00:02, 6.05it/s]\n 73%|███████▎ | 47/64 [00:06<00:02, 6.02it/s]\n 75%|███████▌ | 48/64 [00:06<00:02, 5.92it/s]\n 77%|███████▋ | 49/64 [00:07<00:02, 5.80it/s]\n 78%|███████▊ | 50/64 [00:07<00:02, 5.75it/s]\n 80%|███████▉ | 51/64 [00:07<00:02, 5.70it/s]\n 81%|████████▏ | 52/64 [00:07<00:02, 5.67it/s]\n 83%|████████▎ | 53/64 [00:07<00:01, 5.65it/s]\n 84%|████████▍ | 54/64 [00:07<00:01, 5.62it/s]\n 86%|████████▌ | 55/64 [00:08<00:01, 5.56it/s]\n 88%|████████▊ | 56/64 [00:08<00:01, 5.47it/s]\n 89%|████████▉ | 57/64 [00:08<00:01, 5.43it/s]\n 91%|█████████ | 58/64 [00:08<00:01, 5.45it/s]\n 92%|█████████▏| 59/64 [00:08<00:00, 5.39it/s]\n 94%|█████████▍| 60/64 [00:09<00:00, 5.23it/s]\n 95%|█████████▌| 61/64 [00:09<00:00, 5.14it/s]\n 97%|█████████▋| 62/64 [00:09<00:00, 5.09it/s]\n 98%|█████████▊| 63/64 [00:09<00:00, 4.99it/s]\n100%|██████████| 64/64 [00:09<00:00, 4.90it/s]\n100%|██████████| 64/64 [00:09<00:00, 6.44it/s]", "metrics": { "predict_time": 10.514413572, "total_time": 10.521444 }, "output": "https://replicate.delivery/xezq/F8WejJysqMQVJaMlTafRpPm3LXwnJOape9QbjR3laXzspJePB/out.png", "started_at": "2024-12-27T12:18:52.374031Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-6u27z27dgqkluz3y2p3iqnj2rsdt4xfawrr3gf35siplbwxpxupa", "get": "https://api.replicate.com/v1/predictions/swqxm8959xrme0cm107ayzam3r", "cancel": "https://api.replicate.com/v1/predictions/swqxm8959xrme0cm107ayzam3r/cancel" }, "version": "9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3" }
Generated inUsing seed: 22808 0%| | 0/64 [00:00<?, ?it/s] 2%|▏ | 1/64 [00:00<00:09, 6.93it/s] 3%|▎ | 2/64 [00:00<00:08, 7.41it/s] 5%|▍ | 3/64 [00:00<00:07, 7.66it/s] 6%|▋ | 4/64 [00:00<00:07, 7.70it/s] 8%|▊ | 5/64 [00:00<00:07, 7.70it/s] 9%|▉ | 6/64 [00:00<00:07, 7.68it/s] 11%|█ | 7/64 [00:00<00:07, 7.68it/s] 12%|█▎ | 8/64 [00:01<00:07, 7.68it/s] 14%|█▍ | 9/64 [00:01<00:07, 7.66it/s] 16%|█▌ | 10/64 [00:01<00:07, 7.67it/s] 17%|█▋ | 11/64 [00:01<00:06, 7.65it/s] 19%|█▉ | 12/64 [00:01<00:06, 7.65it/s] 20%|██ | 13/64 [00:01<00:06, 7.63it/s] 22%|██▏ | 14/64 [00:01<00:06, 7.62it/s] 23%|██▎ | 15/64 [00:01<00:06, 7.60it/s] 25%|██▌ | 16/64 [00:02<00:06, 7.60it/s] 27%|██▋ | 17/64 [00:02<00:06, 7.62it/s] 28%|██▊ | 18/64 [00:02<00:06, 7.60it/s] 30%|██▉ | 19/64 [00:02<00:05, 7.57it/s] 31%|███▏ | 20/64 [00:02<00:05, 7.56it/s] 33%|███▎ | 21/64 [00:02<00:05, 7.42it/s] 34%|███▍ | 22/64 [00:02<00:05, 7.31it/s] 36%|███▌ | 23/64 [00:03<00:05, 7.24it/s] 38%|███▊ | 24/64 [00:03<00:05, 7.18it/s] 39%|███▉ | 25/64 [00:03<00:05, 7.14it/s] 41%|████ | 26/64 [00:03<00:05, 7.12it/s] 42%|████▏ | 27/64 [00:03<00:05, 7.09it/s] 44%|████▍ | 28/64 [00:03<00:05, 7.06it/s] 45%|████▌ | 29/64 [00:03<00:04, 7.01it/s] 47%|████▋ | 30/64 [00:04<00:04, 6.96it/s] 48%|████▊ | 31/64 [00:04<00:04, 6.90it/s] 50%|█████ | 32/64 [00:04<00:04, 6.85it/s] 52%|█████▏ | 33/64 [00:04<00:04, 6.80it/s] 53%|█████▎ | 34/64 [00:04<00:04, 6.76it/s] 55%|█████▍ | 35/64 [00:04<00:04, 6.71it/s] 56%|█████▋ | 36/64 [00:04<00:04, 6.70it/s] 58%|█████▊ | 37/64 [00:05<00:04, 6.66it/s] 59%|█████▉ | 38/64 [00:05<00:03, 6.61it/s] 61%|██████ | 39/64 [00:05<00:03, 6.53it/s] 62%|██████▎ | 40/64 [00:05<00:03, 6.49it/s] 64%|██████▍ | 41/64 [00:05<00:03, 6.46it/s] 66%|██████▌ | 42/64 [00:05<00:03, 6.42it/s] 67%|██████▋ | 43/64 [00:06<00:03, 6.26it/s] 69%|██████▉ | 44/64 [00:06<00:03, 6.14it/s] 70%|███████ | 45/64 [00:06<00:03, 6.06it/s] 72%|███████▏ | 46/64 [00:06<00:02, 6.05it/s] 73%|███████▎ | 47/64 [00:06<00:02, 6.02it/s] 75%|███████▌ | 48/64 [00:06<00:02, 5.92it/s] 77%|███████▋ | 49/64 [00:07<00:02, 5.80it/s] 78%|███████▊ | 50/64 [00:07<00:02, 5.75it/s] 80%|███████▉ | 51/64 [00:07<00:02, 5.70it/s] 81%|████████▏ | 52/64 [00:07<00:02, 5.67it/s] 83%|████████▎ | 53/64 [00:07<00:01, 5.65it/s] 84%|████████▍ | 54/64 [00:07<00:01, 5.62it/s] 86%|████████▌ | 55/64 [00:08<00:01, 5.56it/s] 88%|████████▊ | 56/64 [00:08<00:01, 5.47it/s] 89%|████████▉ | 57/64 [00:08<00:01, 5.43it/s] 91%|█████████ | 58/64 [00:08<00:01, 5.45it/s] 92%|█████████▏| 59/64 [00:08<00:00, 5.39it/s] 94%|█████████▍| 60/64 [00:09<00:00, 5.23it/s] 95%|█████████▌| 61/64 [00:09<00:00, 5.14it/s] 97%|█████████▋| 62/64 [00:09<00:00, 5.09it/s] 98%|█████████▊| 63/64 [00:09<00:00, 4.99it/s] 100%|██████████| 64/64 [00:09<00:00, 4.90it/s] 100%|██████████| 64/64 [00:09<00:00, 6.44it/s]
Prediction
chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3IDe1sqtey7g1rmc0cm107bv9rp70StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- prompt
- a selfie of an old man with a white beard.
- guidance_scale
- 5
- negative_prompt
- low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand
- num_diffusion_steps
- 25
- num_inference_steps
- 64
{ "prompt": "a selfie of an old man with a white beard.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", { input: { prompt: "a selfie of an old man with a white beard.", guidance_scale: 5, negative_prompt: "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", num_diffusion_steps: 25, num_inference_steps: 64 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", input={ "prompt": "a selfie of an old man with a white beard.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/nova-t2i using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/nova-t2i:9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3", "input": { "prompt": "a selfie of an old man with a white beard.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T12:19:44.440011Z", "created_at": "2024-12-27T12:19:33.888000Z", "data_removed": false, "error": null, "id": "e1sqtey7g1rmc0cm107bv9rp70", "input": { "prompt": "a selfie of an old man with a white beard.", "guidance_scale": 5, "negative_prompt": "low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", "num_diffusion_steps": 25, "num_inference_steps": 64 }, "logs": "Using seed: 40612\n 0%| | 0/64 [00:00<?, ?it/s]\n 2%|▏ | 1/64 [00:00<00:09, 6.69it/s]\n 3%|▎ | 2/64 [00:00<00:08, 7.25it/s]\n 5%|▍ | 3/64 [00:00<00:08, 7.42it/s]\n 6%|▋ | 4/64 [00:00<00:07, 7.50it/s]\n 8%|▊ | 5/64 [00:00<00:07, 7.50it/s]\n 9%|▉ | 6/64 [00:00<00:07, 7.53it/s]\n 11%|█ | 7/64 [00:00<00:07, 7.58it/s]\n 12%|█▎ | 8/64 [00:01<00:07, 7.59it/s]\n 14%|█▍ | 9/64 [00:01<00:07, 7.58it/s]\n 16%|█▌ | 10/64 [00:01<00:07, 7.56it/s]\n 17%|█▋ | 11/64 [00:01<00:07, 7.56it/s]\n 19%|█▉ | 12/64 [00:01<00:06, 7.55it/s]\n 20%|██ | 13/64 [00:01<00:06, 7.54it/s]\n 22%|██▏ | 14/64 [00:01<00:06, 7.55it/s]\n 23%|██▎ | 15/64 [00:01<00:06, 7.62it/s]\n 25%|██▌ | 16/64 [00:02<00:06, 7.59it/s]\n 27%|██▋ | 17/64 [00:02<00:06, 7.57it/s]\n 28%|██▊ | 18/64 [00:02<00:06, 7.58it/s]\n 30%|██▉ | 19/64 [00:02<00:05, 7.57it/s]\n 31%|███▏ | 20/64 [00:02<00:05, 7.53it/s]\n 33%|███▎ | 21/64 [00:02<00:05, 7.38it/s]\n 34%|███▍ | 22/64 [00:02<00:05, 7.28it/s]\n 36%|███▌ | 23/64 [00:03<00:05, 7.20it/s]\n 38%|███▊ | 24/64 [00:03<00:05, 7.14it/s]\n 39%|███▉ | 25/64 [00:03<00:05, 7.10it/s]\n 41%|████ | 26/64 [00:03<00:05, 7.07it/s]\n 42%|████▏ | 27/64 [00:03<00:05, 7.05it/s]\n 44%|████▍ | 28/64 [00:03<00:05, 7.03it/s]\n 45%|████▌ | 29/64 [00:03<00:04, 7.00it/s]\n 47%|████▋ | 30/64 [00:04<00:04, 6.93it/s]\n 48%|████▊ | 31/64 [00:04<00:04, 6.86it/s]\n 50%|█████ | 32/64 [00:04<00:04, 6.83it/s]\n 52%|█████▏ | 33/64 [00:04<00:04, 6.77it/s]\n 53%|█████▎ | 34/64 [00:04<00:04, 6.73it/s]\n 55%|█████▍ | 35/64 [00:04<00:04, 6.70it/s]\n 56%|█████▋ | 36/64 [00:04<00:04, 6.68it/s]\n 58%|█████▊ | 37/64 [00:05<00:04, 6.60it/s]\n 59%|█████▉ | 38/64 [00:05<00:03, 6.54it/s]\n 61%|██████ | 39/64 [00:05<00:03, 6.46it/s]\n 62%|██████▎ | 40/64 [00:05<00:03, 6.42it/s]\n 64%|██████▍ | 41/64 [00:05<00:03, 6.41it/s]\n 66%|██████▌ | 42/64 [00:05<00:03, 6.35it/s]\n 67%|██████▋ | 43/64 [00:06<00:03, 6.19it/s]\n 69%|██████▉ | 44/64 [00:06<00:03, 6.10it/s]\n 70%|███████ | 45/64 [00:06<00:03, 6.02it/s]\n 72%|███████▏ | 46/64 [00:06<00:03, 6.00it/s]\n 73%|███████▎ | 47/64 [00:06<00:02, 5.94it/s]\n 75%|███████▌ | 48/64 [00:06<00:02, 5.85it/s]\n 77%|███████▋ | 49/64 [00:07<00:02, 5.75it/s]\n 78%|███████▊ | 50/64 [00:07<00:02, 5.69it/s]\n 80%|███████▉ | 51/64 [00:07<00:02, 5.63it/s]\n 81%|████████▏ | 52/64 [00:07<00:02, 5.60it/s]\n 83%|████████▎ | 53/64 [00:07<00:01, 5.55it/s]\n 84%|████████▍ | 54/64 [00:08<00:01, 5.55it/s]\n 86%|████████▌ | 55/64 [00:08<00:01, 5.49it/s]\n 88%|████████▊ | 56/64 [00:08<00:01, 5.41it/s]\n 89%|████████▉ | 57/64 [00:08<00:01, 5.36it/s]\n 91%|█████████ | 58/64 [00:08<00:01, 5.34it/s]\n 92%|█████████▏| 59/64 [00:08<00:00, 5.31it/s]\n 94%|█████████▍| 60/64 [00:09<00:00, 5.16it/s]\n 95%|█████████▌| 61/64 [00:09<00:00, 5.07it/s]\n 97%|█████████▋| 62/64 [00:09<00:00, 5.02it/s]\n 98%|█████████▊| 63/64 [00:09<00:00, 4.93it/s]\n100%|██████████| 64/64 [00:10<00:00, 4.83it/s]\n100%|██████████| 64/64 [00:10<00:00, 6.37it/s]", "metrics": { "predict_time": 10.544868458, "total_time": 10.552011 }, "output": "https://replicate.delivery/xezq/Ag359WDbf6VdNSkrxO6ecLG3kHXEXG6rWv1ROq1EUWng1EfnA/out.png", "started_at": "2024-12-27T12:19:33.895142Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-sw7ehd7x74fwdyr64r5lhrgbyx7gjntwwfg3sn5zi4zsckbyq3aq", "get": "https://api.replicate.com/v1/predictions/e1sqtey7g1rmc0cm107bv9rp70", "cancel": "https://api.replicate.com/v1/predictions/e1sqtey7g1rmc0cm107bv9rp70/cancel" }, "version": "9dbb060cfca8dc11331a76a202d1179c5018f96a84830ce4a402882215e534d3" }
Generated inUsing seed: 40612 0%| | 0/64 [00:00<?, ?it/s] 2%|▏ | 1/64 [00:00<00:09, 6.69it/s] 3%|▎ | 2/64 [00:00<00:08, 7.25it/s] 5%|▍ | 3/64 [00:00<00:08, 7.42it/s] 6%|▋ | 4/64 [00:00<00:07, 7.50it/s] 8%|▊ | 5/64 [00:00<00:07, 7.50it/s] 9%|▉ | 6/64 [00:00<00:07, 7.53it/s] 11%|█ | 7/64 [00:00<00:07, 7.58it/s] 12%|█▎ | 8/64 [00:01<00:07, 7.59it/s] 14%|█▍ | 9/64 [00:01<00:07, 7.58it/s] 16%|█▌ | 10/64 [00:01<00:07, 7.56it/s] 17%|█▋ | 11/64 [00:01<00:07, 7.56it/s] 19%|█▉ | 12/64 [00:01<00:06, 7.55it/s] 20%|██ | 13/64 [00:01<00:06, 7.54it/s] 22%|██▏ | 14/64 [00:01<00:06, 7.55it/s] 23%|██▎ | 15/64 [00:01<00:06, 7.62it/s] 25%|██▌ | 16/64 [00:02<00:06, 7.59it/s] 27%|██▋ | 17/64 [00:02<00:06, 7.57it/s] 28%|██▊ | 18/64 [00:02<00:06, 7.58it/s] 30%|██▉ | 19/64 [00:02<00:05, 7.57it/s] 31%|███▏ | 20/64 [00:02<00:05, 7.53it/s] 33%|███▎ | 21/64 [00:02<00:05, 7.38it/s] 34%|███▍ | 22/64 [00:02<00:05, 7.28it/s] 36%|███▌ | 23/64 [00:03<00:05, 7.20it/s] 38%|███▊ | 24/64 [00:03<00:05, 7.14it/s] 39%|███▉ | 25/64 [00:03<00:05, 7.10it/s] 41%|████ | 26/64 [00:03<00:05, 7.07it/s] 42%|████▏ | 27/64 [00:03<00:05, 7.05it/s] 44%|████▍ | 28/64 [00:03<00:05, 7.03it/s] 45%|████▌ | 29/64 [00:03<00:04, 7.00it/s] 47%|████▋ | 30/64 [00:04<00:04, 6.93it/s] 48%|████▊ | 31/64 [00:04<00:04, 6.86it/s] 50%|█████ | 32/64 [00:04<00:04, 6.83it/s] 52%|█████▏ | 33/64 [00:04<00:04, 6.77it/s] 53%|█████▎ | 34/64 [00:04<00:04, 6.73it/s] 55%|█████▍ | 35/64 [00:04<00:04, 6.70it/s] 56%|█████▋ | 36/64 [00:04<00:04, 6.68it/s] 58%|█████▊ | 37/64 [00:05<00:04, 6.60it/s] 59%|█████▉ | 38/64 [00:05<00:03, 6.54it/s] 61%|██████ | 39/64 [00:05<00:03, 6.46it/s] 62%|██████▎ | 40/64 [00:05<00:03, 6.42it/s] 64%|██████▍ | 41/64 [00:05<00:03, 6.41it/s] 66%|██████▌ | 42/64 [00:05<00:03, 6.35it/s] 67%|██████▋ | 43/64 [00:06<00:03, 6.19it/s] 69%|██████▉ | 44/64 [00:06<00:03, 6.10it/s] 70%|███████ | 45/64 [00:06<00:03, 6.02it/s] 72%|███████▏ | 46/64 [00:06<00:03, 6.00it/s] 73%|███████▎ | 47/64 [00:06<00:02, 5.94it/s] 75%|███████▌ | 48/64 [00:06<00:02, 5.85it/s] 77%|███████▋ | 49/64 [00:07<00:02, 5.75it/s] 78%|███████▊ | 50/64 [00:07<00:02, 5.69it/s] 80%|███████▉ | 51/64 [00:07<00:02, 5.63it/s] 81%|████████▏ | 52/64 [00:07<00:02, 5.60it/s] 83%|████████▎ | 53/64 [00:07<00:01, 5.55it/s] 84%|████████▍ | 54/64 [00:08<00:01, 5.55it/s] 86%|████████▌ | 55/64 [00:08<00:01, 5.49it/s] 88%|████████▊ | 56/64 [00:08<00:01, 5.41it/s] 89%|████████▉ | 57/64 [00:08<00:01, 5.36it/s] 91%|█████████ | 58/64 [00:08<00:01, 5.34it/s] 92%|█████████▏| 59/64 [00:08<00:00, 5.31it/s] 94%|█████████▍| 60/64 [00:09<00:00, 5.16it/s] 95%|█████████▌| 61/64 [00:09<00:00, 5.07it/s] 97%|█████████▋| 62/64 [00:09<00:00, 5.02it/s] 98%|█████████▊| 63/64 [00:09<00:00, 4.93it/s] 100%|██████████| 64/64 [00:10<00:00, 4.83it/s] 100%|██████████| 64/64 [00:10<00:00, 6.37it/s]
Want to make some of these yourself?
Run this model