Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run zeke/adventure-time using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"zeke/adventure-time:779aa69b57369ea3d2cc679c6d6d2ce007d67594aa6ff7451111376396f32bf3",
{
input: {
width: 1024,
height: 1024,
prompt: "a drippy swamp monster in the style of ADVENTURE_TIME",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run zeke/adventure-time using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"zeke/adventure-time:779aa69b57369ea3d2cc679c6d6d2ce007d67594aa6ff7451111376396f32bf3",
input={
"width": 1024,
"height": 1024,
"prompt": "a drippy swamp monster in the style of ADVENTURE_TIME",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run zeke/adventure-time using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "779aa69b57369ea3d2cc679c6d6d2ce007d67594aa6ff7451111376396f32bf3",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a drippy swamp monster in the style of ADVENTURE_TIME",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run zeke/adventure-time using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/zeke/adventure-time@sha256:779aa69b57369ea3d2cc679c6d6d2ce007d67594aa6ff7451111376396f32bf3 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a drippy swamp monster in the style of ADVENTURE_TIME"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run zeke/adventure-time using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/zeke/adventure-time@sha256:779aa69b57369ea3d2cc679c6d6d2ce007d67594aa6ff7451111376396f32bf3
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a drippy swamp monster in the style of ADVENTURE_TIME", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.016. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-08-22T03:30:26.672377Z",
"created_at": "2023-08-22T03:28:15.641973Z",
"data_removed": false,
"error": null,
"id": "akrbp5dbc6m5f7grrek6wvo4wu",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a drippy swamp monster in the style of ADVENTURE_TIME",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 49688\nPrompt: a drippy swamp monster in the style of ADVENTURE_TIME\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:38, 1.29it/s]\n 4%|▍ | 2/50 [00:01<00:23, 2.09it/s]\n 6%|▌ | 3/50 [00:01<00:18, 2.60it/s]\n 8%|▊ | 4/50 [00:01<00:15, 2.94it/s]\n 10%|█ | 5/50 [00:01<00:14, 3.16it/s]\n 12%|█▏ | 6/50 [00:02<00:13, 3.32it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.42it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.50it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.55it/s]\n 20%|██ | 10/50 [00:03<00:11, 3.58it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.61it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]\n 26%|██▌ | 13/50 [00:04<00:10, 3.63it/s]\n 28%|██▊ | 14/50 [00:04<00:09, 3.64it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.65it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.67it/s]\n 36%|███▌ | 18/50 [00:05<00:08, 3.67it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.68it/s]\n 42%|████▏ | 21/50 [00:06<00:07, 3.68it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.68it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.68it/s]\n 50%|█████ | 25/50 [00:07<00:06, 3.68it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]\n 56%|█████▌ | 28/50 [00:08<00:05, 3.68it/s]\n 58%|█████▊ | 29/50 [00:08<00:05, 3.68it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.68it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]\n 64%|██████▍ | 32/50 [00:09<00:04, 3.68it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.68it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:10<00:03, 3.68it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]\n 78%|███████▊ | 39/50 [00:11<00:02, 3.67it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.68it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]\n 86%|████████▌ | 43/50 [00:12<00:01, 3.67it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.67it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.67it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.67it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.54it/s]",
"metrics": {
"predict_time": 16.651509,
"total_time": 131.030404
},
"output": [
"https://replicate.delivery/pbxt/zN77t74n8YrCH9CfE8NXBXT7LzCvUVMN9xftxD4W7S3R3dcRA/out-0.png"
],
"started_at": "2023-08-22T03:30:10.020868Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/akrbp5dbc6m5f7grrek6wvo4wu",
"cancel": "https://api.replicate.com/v1/predictions/akrbp5dbc6m5f7grrek6wvo4wu/cancel"
},
"version": "779aa69b57369ea3d2cc679c6d6d2ce007d67594aa6ff7451111376396f32bf3"
}
Using seed: 49688
Prompt: a drippy swamp monster in the style of ADVENTURE_TIME
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:38, 1.29it/s]
4%|▍ | 2/50 [00:01<00:23, 2.09it/s]
6%|▌ | 3/50 [00:01<00:18, 2.60it/s]
8%|▊ | 4/50 [00:01<00:15, 2.94it/s]
10%|█ | 5/50 [00:01<00:14, 3.16it/s]
12%|█▏ | 6/50 [00:02<00:13, 3.32it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.42it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.50it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.55it/s]
20%|██ | 10/50 [00:03<00:11, 3.58it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.61it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]
26%|██▌ | 13/50 [00:04<00:10, 3.63it/s]
28%|██▊ | 14/50 [00:04<00:09, 3.64it/s]
30%|███ | 15/50 [00:04<00:09, 3.65it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]
34%|███▍ | 17/50 [00:05<00:09, 3.67it/s]
36%|███▌ | 18/50 [00:05<00:08, 3.67it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.68it/s]
42%|████▏ | 21/50 [00:06<00:07, 3.68it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.68it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]
48%|████▊ | 24/50 [00:07<00:07, 3.68it/s]
50%|█████ | 25/50 [00:07<00:06, 3.68it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]
56%|█████▌ | 28/50 [00:08<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:08<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:09<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:10<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:10<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:11<00:02, 3.67it/s]
80%|████████ | 40/50 [00:11<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:12<00:01, 3.67it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.67it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.67it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.67it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:14<00:00, 3.67it/s]
100%|██████████| 50/50 [00:14<00:00, 3.54it/s]
This model costs approximately $0.016 to run on Replicate, or 62 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 16 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 49688
Prompt: a drippy swamp monster in the style of ADVENTURE_TIME
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:38, 1.29it/s]
4%|▍ | 2/50 [00:01<00:23, 2.09it/s]
6%|▌ | 3/50 [00:01<00:18, 2.60it/s]
8%|▊ | 4/50 [00:01<00:15, 2.94it/s]
10%|█ | 5/50 [00:01<00:14, 3.16it/s]
12%|█▏ | 6/50 [00:02<00:13, 3.32it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.42it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.50it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.55it/s]
20%|██ | 10/50 [00:03<00:11, 3.58it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.61it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]
26%|██▌ | 13/50 [00:04<00:10, 3.63it/s]
28%|██▊ | 14/50 [00:04<00:09, 3.64it/s]
30%|███ | 15/50 [00:04<00:09, 3.65it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]
34%|███▍ | 17/50 [00:05<00:09, 3.67it/s]
36%|███▌ | 18/50 [00:05<00:08, 3.67it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.68it/s]
42%|████▏ | 21/50 [00:06<00:07, 3.68it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.68it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]
48%|████▊ | 24/50 [00:07<00:07, 3.68it/s]
50%|█████ | 25/50 [00:07<00:06, 3.68it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]
56%|█████▌ | 28/50 [00:08<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:08<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:09<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:10<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:10<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:11<00:02, 3.67it/s]
80%|████████ | 40/50 [00:11<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:12<00:01, 3.67it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.67it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.67it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.67it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:14<00:00, 3.67it/s]
100%|██████████| 50/50 [00:14<00:00, 3.54it/s]