Run zeke/cog-markdown-example using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"zeke/cog-markdown-example:146e98d6b010c431f601ac8482d7f0f9562730c8e82f93f9ad6eff711f95023a",
{
input: {
markdown: "```py\ndef allow_iframe_youtube(tag, name, value):\n if name == \"src\" and value.startswith(\"https://www.youtube.com/embed/\"):\n return True\n if name in (\"allow\", \"width\", \"height\"):\n return True\n return False\n\n\ndef allow_fenced_code_languages(tag, name, value):\n return (\n tag == \"code\"\n and name == \"class\"\n and value.startswith(\"language-\")\n and \" \" not in value\n )\n```"
}
}
);
console.log(output);
Run zeke/cog-markdown-example using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"zeke/cog-markdown-example:146e98d6b010c431f601ac8482d7f0f9562730c8e82f93f9ad6eff711f95023a",
input={
"markdown": "```py\ndef allow_iframe_youtube(tag, name, value):\n if name == \"src\" and value.startswith(\"https://www.youtube.com/embed/\"):\n return True\n if name in (\"allow\", \"width\", \"height\"):\n return True\n return False\n\n\ndef allow_fenced_code_languages(tag, name, value):\n return (\n tag == \"code\"\n and name == \"class\"\n and value.startswith(\"language-\")\n and \" \" not in value\n )\n```"
}
)
print(output)
Run this to download the model and run it in your local environment:
cog predict r8.im/zeke/cog-markdown-example@sha256:146e98d6b010c431f601ac8482d7f0f9562730c8e82f93f9ad6eff711f95023a \
-i $'markdown="```py\\ndef allow_iframe_youtube(tag, name, value):\\n if name == \\"src\\" and value.startswith(\\"https://www.youtube.com/embed/\\"):\\n return True\\n if name in (\\"allow\\", \\"width\\", \\"height\\"):\\n return True\\n return False\\n\\n\\ndef allow_fenced_code_languages(tag, name, value):\\n return (\\n tag == \\"code\\"\\n and name == \\"class\\"\\n and value.startswith(\\"language-\\")\\n and \\" \\" not in value\\n )\\n```"'
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 r8.im/zeke/cog-markdown-example@sha256:146e98d6b010c431f601ac8482d7f0f9562730c8e82f93f9ad6eff711f95023acurl -s -X POST \
-H "Content-Type: application/json" \
-d $'{
"input": {
"markdown": "```py\\ndef allow_iframe_youtube(tag, name, value):\\n if name == \\"src\\" and value.startswith(\\"https://www.youtube.com/embed/\\"):\\n return True\\n if name in (\\"allow\\", \\"width\\", \\"height\\"):\\n return True\\n return False\\n\\n\\ndef allow_fenced_code_languages(tag, name, value):\\n return (\\n tag == \\"code\\"\\n and name == \\"class\\"\\n and value.startswith(\\"language-\\")\\n and \\" \\" not in value\\n )\\n```"
}
}' \
http://localhost:5000/predictions