HTTP API
Authentication
All API requests must include a valid API token in the Authorization
request header. The token must be prefixed by “Bearer”, followed by a space and the token value.
Example: Authorization: Bearer r8_Hw***********************************
Find your tokens at https://replicate.com/account/api-tokens
Create a prediction
Endpoint
POST https://api.replicate.com/v1/predictions
Description
Create a prediction for the model version and inputs you provide.
If you’re running an official model, use the models.predictions.create
operation instead.
Example cURL request:
curl -s -X POST -H 'Prefer: wait' \
-d '{"version": "5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa", "input": {"text": "Alice"}}' \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H 'Content-Type: application/json' \
https://api.replicate.com/v1/predictions
The request will wait up to 60 seconds for the model to run. If this time is exceeded the prediction will be returned in a "starting"
state and need to be retrieved using the predictions.get
endpiont.
For a complete overview of the predictions.create
API check out our documentation on creating a prediction which covers a variety of use cases.
Headers
- Preferstring
Leave the request open and wait for the model to finish generating output. Set to
wait=n
where n is a number of seconds between 1 and 60.See https://replicate.com/docs/topics/predictions/create-a-prediction#sync-mode for more information.
Request Body
The model's input as a JSON object. The input schema depends on what model you are running. To see the available inputs, click the "API" tab on the model you are running or get the model version and look at its
openapi_schema
property. For example, stability-ai/sdxl takesprompt
as an input.Files should be passed as HTTP URLs or data URLs.
Use an HTTP URL when:
- you have a large file > 256kb
- you want to be able to use the file multiple times
- you want your prediction metadata to be associable with your input files
Use a data URL when:
- you have a small file <= 256kb
- you don't want to upload and host the file somewhere
- you don't need to use the file again (Replicate will not store it)
- The ID of the model version that you want to run.
- streamboolean
This field is deprecated.
Request a URL to receive streaming output using server-sent events (SSE).
This field is no longer needed as the returned prediction will always have a
stream
entry in itsurl
property if the model supports streaming. - webhookstring
An HTTPS URL for receiving a webhook when the prediction has new output. The webhook will be a POST request where the request body is the same as the response body of the get prediction operation. If there are network problems, we will retry the webhook a few times, so make sure it can be safely called more than once. Replicate will not follow redirects when sending webhook requests to your service, so be sure to specify a URL that will resolve without redirecting.
By default, we will send requests to your webhook URL whenever there are new outputs or the prediction has finished. You can change which events trigger webhook requests by specifying
webhook_events_filter
in the prediction request:start
: immediately on prediction startoutput
: each time a prediction generates an output (note that predictions can generate multiple outputs)logs
: each time log output is generated by a predictioncompleted
: when the prediction reaches a terminal state (succeeded/canceled/failed)
For example, if you only wanted requests to be sent at the start and end of the prediction, you would provide:
{ "version": "5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa", "input": { "text": "Alice" }, "webhook": "https://example.com/my-webhook", "webhook_events_filter": ["start", "completed"] }
Requests for event types
output
andlogs
will be sent at most once every 500ms. If you requeststart
andcompleted
webhooks, then they'll always be sent regardless of throttling.
Get a prediction
Endpoint
GET https://api.replicate.com/v1/predictions/{prediction_id}
Description
Get the current state of a prediction.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/predictions/gm3qorzdhgbfurvjtvhg6dckhu
The response will be the prediction object:
{
"id": "gm3qorzdhgbfurvjtvhg6dckhu",
"model": "replicate/hello-world",
"version": "5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa",
"input": {
"text": "Alice"
},
"logs": "",
"output": "hello Alice",
"error": null,
"status": "succeeded",
"created_at": "2023-09-08T16:19:34.765994Z",
"data_removed": false,
"started_at": "2023-09-08T16:19:34.779176Z",
"completed_at": "2023-09-08T16:19:34.791859Z",
"metrics": {
"predict_time": 0.012683
},
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/gm3qorzdhgbfurvjtvhg6dckhu/cancel",
"get": "https://api.replicate.com/v1/predictions/gm3qorzdhgbfurvjtvhg6dckhu"
}
}
status
will be one of:
starting
: the prediction is starting up. If this status lasts longer than a few seconds, then it’s typically because a new worker is being started to run the prediction.processing
: thepredict()
method of the model is currently running.succeeded
: the prediction completed successfully.failed
: the prediction encountered an error during processing.canceled
: the prediction was canceled by its creator.
In the case of success, output
will be an object containing the output of the model. Any files will be represented as HTTPS URLs. You’ll need to pass the Authorization
header to request them.
In the case of failure, error
will contain the error encountered during the prediction.
Terminated predictions (with a status of succeeded
, failed
, or canceled
) will include a metrics
object with a predict_time
property showing the amount of CPU or GPU time, in seconds, that the prediction used while running. It won’t include time waiting for the prediction to start.
All input parameters, output values, and logs are automatically removed after an hour, by default, for predictions created through the API.
You must save a copy of any data or files in the output if you’d like to continue using them. The output
key will still be present, but it’s value will be null
after the output has been removed.
Output files are served by replicate.delivery
and its subdomains. If you use an allow list of external domains for your assets, add replicate.delivery
and *.replicate.delivery
to it.
URL Parameters
- The ID of the prediction to get.
List predictions
Endpoint
GET https://api.replicate.com/v1/predictions
Description
Get a paginated list of all predictions created by the user or organization associated with the provided API token.
This will include predictions created from the API and the website. It will return 100 records per page.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/predictions
The response will be a paginated JSON array of prediction objects, sorted with the most recent prediction first:
{
"next": null,
"previous": null,
"results": [
{
"completed_at": "2023-09-08T16:19:34.791859Z",
"created_at": "2023-09-08T16:19:34.907244Z",
"data_removed": false,
"error": null,
"id": "gm3qorzdhgbfurvjtvhg6dckhu",
"input": {
"text": "Alice"
},
"metrics": {
"predict_time": 0.012683
},
"output": "hello Alice",
"started_at": "2023-09-08T16:19:34.779176Z",
"source": "api",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/gm3qorzdhgbfurvjtvhg6dckhu",
"cancel": "https://api.replicate.com/v1/predictions/gm3qorzdhgbfurvjtvhg6dckhu/cancel"
},
"model": "replicate/hello-world",
"version": "5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa",
}
]
}
id
will be the unique ID of the prediction.
source
will indicate how the prediction was created. Possible values are web
or api
.
status
will be the status of the prediction. Refer to get a single prediction for possible values.
urls
will be a convenience object that can be used to construct new API requests for the given prediction. If the requested model version supports streaming, this will have a stream
entry with an HTTPS URL that you can use to construct an EventSource
.
model
will be the model identifier string in the format of {model_owner}/{model_name}
.
version
will be the unique ID of model version used to create the prediction.
data_removed
will be true
if the input and output data has been deleted.
Query Parameters
- created_afterstringInclude only predictions created at or after this date-time, in ISO 8601 format.
- created_beforestringInclude only predictions created before this date-time, in ISO 8601 format.
Cancel a prediction
Endpoint
POST https://api.replicate.com/v1/predictions/{prediction_id}/cancel
URL Parameters
- The ID of the prediction to cancel.
Create a model
Endpoint
POST https://api.replicate.com/v1/models
Description
Create a model.
Example cURL request:
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H 'Content-Type: application/json' \
-d '{"owner": "alice", "name": "my-model", "description": "An example model", "visibility": "public", "hardware": "cpu"}' \
https://api.replicate.com/v1/models
The response will be a model object in the following format:
{
"url": "https://replicate.com/alice/my-model",
"owner": "alice",
"name": "my-model",
"description": "An example model",
"visibility": "public",
"github_url": null,
"paper_url": null,
"license_url": null,
"run_count": 0,
"cover_image_url": null,
"default_example": null,
"latest_version": null,
}
Note that there is a limit of 1,000 models per account. For most purposes, we recommend using a single model and pushing new versions of the model as you make changes to it.
Request Body
- The SKU for the hardware used to run the model. Possible values can be retrieved from the
hardware.list
endpoint. - The name of the model. This must be unique among all models owned by the user or organization.
- The name of the user or organization that will own the model. This must be the same as the user or organization that is making the API request. In other words, the API token used in the request must belong to this user or organization.
- Whether the model should be public or private. A public model can be viewed and run by anyone, whereas a private model can be viewed and run only by the user or organization members that own the model.
- cover_image_urlstringA URL for the model's cover image. This should be an image file.
- descriptionstringA description of the model.
- github_urlstringA URL for the model's source code on GitHub.
- license_urlstringA URL for the model's license.
- paper_urlstringA URL for the model's paper.
Get a model
Endpoint
GET https://api.replicate.com/v1/models/{model_owner}/{model_name}
Description
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world
The response will be a model object in the following format:
{
"url": "https://replicate.com/replicate/hello-world",
"owner": "replicate",
"name": "hello-world",
"description": "A tiny model that says hello",
"visibility": "public",
"github_url": "https://github.com/replicate/cog-examples",
"paper_url": null,
"license_url": null,
"run_count": 5681081,
"cover_image_url": "...",
"default_example": {...},
"latest_version": {...},
}
The model object includes the input and output schema for the latest version of the model.
Here’s an example showing how to fetch the model with cURL and display its input schema with jq:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world \
| jq ".latest_version.openapi_schema.components.schemas.Input"
This will return the following JSON object:
{
"type": "object",
"title": "Input",
"required": [
"text"
],
"properties": {
"text": {
"type": "string",
"title": "Text",
"x-order": 0,
"description": "Text to prefix with 'hello '"
}
}
}
The cover_image_url
string is an HTTPS URL for an image file. This can be:
- An image uploaded by the model author.
- The output file of the example prediction, if the model author has not set a cover image.
- The input file of the example prediction, if the model author has not set a cover image and the example prediction has no output file.
- A generic fallback image.
The default_example
object is a prediction created with this model.
The latest_version
object is the model’s most recently pushed version.
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
List public models
Endpoint
GET https://api.replicate.com/v1/models
Description
Get a paginated list of public models.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models
The response will be a pagination object containing a list of model objects.
See the models.get
docs for more details about the model object.
Search public models
Endpoint
QUERY https://api.replicate.com/v1/models
Description
Get a list of public models matching a search query.
Example cURL request:
curl -s -X QUERY \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: text/plain" \
-d "hello" \
https://api.replicate.com/v1/models
The response will be a paginated JSON object containing an array of model objects.
See the models.get
docs for more details about the model object.
Delete a model
Endpoint
DELETE https://api.replicate.com/v1/models/{model_owner}/{model_name}
Description
Delete a model
Model deletion has some restrictions:
- You can only delete models you own.
- You can only delete private models.
- You can only delete models that have no versions associated with them. Currently you’ll need to delete the model’s versions before you can delete the model itself.
Example cURL request:
curl -s -X DELETE \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world
The response will be an empty 204, indicating the model has been deleted.
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
List examples for a model
Endpoint
GET https://api.replicate.com/v1/models/{model_owner}/{model_name}/examples
Description
List example predictions made using the model. These are predictions that were saved by the model author as illustrative examples of the model’s capabilities.
If you want all the examples for a model, use this operation.
If you just want the model’s default example, you can use the models.get
operation instead, which includes a default_example
object.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world/examples
The response will be a pagination object containing a list of example predictions:
{
"next": "https://api.replicate.com/v1/models/replicate/hello-world/examples?cursor=...",
"previous": "https://api.replicate.com/v1/models/replicate/hello-world/examples?cursor=...",
"results": [...]
}
Each item in the results
list is a prediction object.
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
Create a prediction using an official model
Endpoint
POST https://api.replicate.com/v1/models/{model_owner}/{model_name}/predictions
Description
Create a prediction using an official model.
If you’re not running an official model, use the predictions.create
operation instead.
Example cURL request:
curl -s -X POST -H 'Prefer: wait' \
-d '{"input": {"prompt": "Write a short poem about the weather."}}' \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H 'Content-Type: application/json' \
https://api.replicate.com/v1/models/meta/meta-llama-3-70b-instruct/predictions
The request will wait up to 60 seconds for the model to run. If this time is exceeded the prediction will be returned in a "starting"
state and need to be retrieved using the predictions.get
endpiont.
For a complete overview of the deployments.predictions.create
API check out our documentation on creating a prediction which covers a variety of use cases.
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
Headers
- Preferstring
Leave the request open and wait for the model to finish generating output. Set to
wait=n
where n is a number of seconds between 1 and 60.See https://replicate.com/docs/topics/predictions/create-a-prediction#sync-mode for more information.
Request Body
The model's input as a JSON object. The input schema depends on what model you are running. To see the available inputs, click the "API" tab on the model you are running or get the model version and look at its
openapi_schema
property. For example, stability-ai/sdxl takesprompt
as an input.Files should be passed as HTTP URLs or data URLs.
Use an HTTP URL when:
- you have a large file > 256kb
- you want to be able to use the file multiple times
- you want your prediction metadata to be associable with your input files
Use a data URL when:
- you have a small file <= 256kb
- you don't want to upload and host the file somewhere
- you don't need to use the file again (Replicate will not store it)
- streamboolean
This field is deprecated.
Request a URL to receive streaming output using server-sent events (SSE).
This field is no longer needed as the returned prediction will always have a
stream
entry in itsurl
property if the model supports streaming. - webhookstring
An HTTPS URL for receiving a webhook when the prediction has new output. The webhook will be a POST request where the request body is the same as the response body of the get prediction operation. If there are network problems, we will retry the webhook a few times, so make sure it can be safely called more than once. Replicate will not follow redirects when sending webhook requests to your service, so be sure to specify a URL that will resolve without redirecting.
By default, we will send requests to your webhook URL whenever there are new outputs or the prediction has finished. You can change which events trigger webhook requests by specifying
webhook_events_filter
in the prediction request:start
: immediately on prediction startoutput
: each time a prediction generates an output (note that predictions can generate multiple outputs)logs
: each time log output is generated by a predictioncompleted
: when the prediction reaches a terminal state (succeeded/canceled/failed)
For example, if you only wanted requests to be sent at the start and end of the prediction, you would provide:
{ "input": { "text": "Alice" }, "webhook": "https://example.com/my-webhook", "webhook_events_filter": ["start", "completed"] }
Requests for event types
output
andlogs
will be sent at most once every 500ms. If you requeststart
andcompleted
webhooks, then they'll always be sent regardless of throttling.
Get a model’s README
Endpoint
GET https://api.replicate.com/v1/models/{model_owner}/{model_name}/readme
Description
Get the README content for a model.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world/readme
The response will be the README content as plain text in Markdown format:
# Hello World Model
This is an example model that...
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
Get a model version
Endpoint
GET https://api.replicate.com/v1/models/{model_owner}/{model_name}/versions/{version_id}
Description
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world/versions/5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa
The response will be the version object:
{
"id": "5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa",
"created_at": "2022-04-26T19:29:04.418669Z",
"cog_version": "0.3.0",
"openapi_schema": {...}
}
Every model describes its inputs and outputs with OpenAPI Schema Objects in the openapi_schema
property.
The openapi_schema.components.schemas.Input
property for the replicate/hello-world model looks like this:
{
"type": "object",
"title": "Input",
"required": [
"text"
],
"properties": {
"text": {
"x-order": 0,
"type": "string",
"title": "Text",
"description": "Text to prefix with 'hello '"
}
}
}
The openapi_schema.components.schemas.Output
property for the replicate/hello-world model looks like this:
{
"type": "string",
"title": "Output"
}
For more details, see the docs on Cog’s supported input and output types
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
- The ID of the version.
List model versions
Endpoint
GET https://api.replicate.com/v1/models/{model_owner}/{model_name}/versions
Description
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world/versions
The response will be a JSON array of model version objects, sorted with the most recent version first:
{
"next": null,
"previous": null,
"results": [
{
"id": "5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa",
"created_at": "2022-04-26T19:29:04.418669Z",
"cog_version": "0.3.0",
"openapi_schema": {...}
}
]
}
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
Delete a model version
Endpoint
DELETE https://api.replicate.com/v1/models/{model_owner}/{model_name}/versions/{version_id}
Description
Delete a model version and all associated predictions, including all output files.
Model version deletion has some restrictions:
- You can only delete versions from models you own.
- You can only delete versions from private models.
- You cannot delete a version if someone other than you has run predictions with it.
- You cannot delete a version if it is being used as the base model for a fine tune/training.
- You cannot delete a version if it has an associated deployment.
- You cannot delete a version if another model version is overridden to use it.
Example cURL request:
curl -s -X DELETE \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/models/replicate/hello-world/versions/5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa
The response will be an empty 202, indicating the deletion request has been accepted. It might take a few minutes to be processed.
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
- The ID of the version.
Get a collection of models
Endpoint
GET https://api.replicate.com/v1/collections/{collection_slug}
Description
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/collections/super-resolution
The response will be a collection object with a nested list of the models in that collection:
{
"name": "Super resolution",
"slug": "super-resolution",
"description": "Upscaling models that create high-quality images from low-quality images.",
"models": [...]
}
URL Parameters
- The slug of the collection, like
super-resolution
orimage-restoration
. See replicate.com/collections.
List collections of models
Endpoint
GET https://api.replicate.com/v1/collections
Description
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/collections
The response will be a paginated JSON list of collection objects:
{
"next": "null",
"previous": null,
"results": [
{
"name": "Super resolution",
"slug": "super-resolution",
"description": "Upscaling models that create high-quality images from low-quality images."
}
]
}
Create a deployment
Endpoint
POST https://api.replicate.com/v1/deployments
Description
Create a new deployment:
Example cURL request:
curl -s \
-X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"name": "my-app-image-generator",
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
"hardware": "gpu-t4",
"min_instances": 0,
"max_instances": 3
}' \
https://api.replicate.com/v1/deployments
The response will be a JSON object describing the deployment:
{
"owner": "acme",
"name": "my-app-image-generator",
"current_release": {
"number": 1,
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
"created_at": "2024-02-15T16:32:57.018467Z",
"created_by": {
"type": "organization",
"username": "acme",
"name": "Acme Corp, Inc.",
"avatar_url": "https://cdn.replicate.com/avatars/acme.png",
"github_url": "https://github.com/acme"
},
"configuration": {
"hardware": "gpu-t4",
"min_instances": 1,
"max_instances": 5
}
}
}
Request Body
- The SKU for the hardware used to run the model. Possible values can be retrieved from the
hardware.list
endpoint. - The maximum number of instances for scaling.
- The minimum number of instances for scaling.
- The full name of the model that you want to deploy e.g. stability-ai/sdxl.
- The name of the deployment.
- The 64-character string ID of the model version that you want to deploy.
Get a deployment
Endpoint
GET https://api.replicate.com/v1/deployments/{deployment_owner}/{deployment_name}
Description
Get information about a deployment by name including the current release.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/deployments/replicate/my-app-image-generator
The response will be a JSON object describing the deployment:
{
"owner": "acme",
"name": "my-app-image-generator",
"current_release": {
"number": 1,
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
"created_at": "2024-02-15T16:32:57.018467Z",
"created_by": {
"type": "organization",
"username": "acme",
"name": "Acme Corp, Inc.",
"avatar_url": "https://cdn.replicate.com/avatars/acme.png",
"github_url": "https://github.com/acme"
},
"configuration": {
"hardware": "gpu-t4",
"min_instances": 1,
"max_instances": 5
}
}
}
URL Parameters
- The name of the user or organization that owns the deployment.
- The name of the deployment.
List deployments
Endpoint
GET https://api.replicate.com/v1/deployments
Description
Get a list of deployments associated with the current account, including the latest release configuration for each deployment.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/deployments
The response will be a paginated JSON array of deployment objects, sorted with the most recent deployment first:
{
"next": "http://api.replicate.com/v1/deployments?cursor=cD0yMDIzLTA2LTA2KzIzJTNBNDAlM0EwOC45NjMwMDAlMkIwMCUzQTAw",
"previous": null,
"results": [
{
"owner": "replicate",
"name": "my-app-image-generator",
"current_release": {
"number": 1,
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
"created_at": "2024-02-15T16:32:57.018467Z",
"created_by": {
"type": "organization",
"username": "acme",
"name": "Acme Corp, Inc.",
"avatar_url": "https://cdn.replicate.com/avatars/acme.png",
"github_url": "https://github.com/acme"
},
"configuration": {
"hardware": "gpu-t4",
"min_instances": 1,
"max_instances": 5
}
}
}
]
}
Update a deployment
Endpoint
PATCH https://api.replicate.com/v1/deployments/{deployment_owner}/{deployment_name}
Description
Update properties of an existing deployment, including hardware, min/max instances, and the deployment’s underlying model version.
Example cURL request:
curl -s \
-X PATCH \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{"min_instances": 3, "max_instances": 10}' \
https://api.replicate.com/v1/deployments/acme/my-app-image-generator
The response will be a JSON object describing the deployment:
{
"owner": "acme",
"name": "my-app-image-generator",
"current_release": {
"number": 2,
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
"created_at": "2024-02-15T16:32:57.018467Z",
"created_by": {
"type": "organization",
"username": "acme",
"name": "Acme Corp, Inc.",
"avatar_url": "https://cdn.replicate.com/avatars/acme.png",
"github_url": "https://github.com/acme"
},
"configuration": {
"hardware": "gpu-t4",
"min_instances": 3,
"max_instances": 10
}
}
}
Updating any deployment properties will increment the number
field of the current_release
.
URL Parameters
- The name of the user or organization that owns the deployment.
- The name of the deployment.
Request Body
- hardwarestringThe SKU for the hardware used to run the model. Possible values can be retrieved from the
hardware.list
endpoint. - max_instancesintegerThe maximum number of instances for scaling.
- min_instancesintegerThe minimum number of instances for scaling.
- versionstringThe ID of the model version that you want to deploy
Delete a deployment
Endpoint
DELETE https://api.replicate.com/v1/deployments/{deployment_owner}/{deployment_name}
Description
Delete a deployment
Deployment deletion has some restrictions:
- You can only delete deployments that have been offline and unused for at least 15 minutes.
Example cURL request:
curl -s -X DELETE \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/deployments/acme/my-app-image-generator
The response will be an empty 204, indicating the deployment has been deleted.
URL Parameters
- The name of the user or organization that owns the deployment.
- The name of the deployment.
Create a prediction using a deployment
Endpoint
POST https://api.replicate.com/v1/deployments/{deployment_owner}/{deployment_name}/predictions
Description
Create a prediction for the deployment and inputs you provide.
Example cURL request:
curl -s -X POST -H 'Prefer: wait' \
-d '{"input": {"prompt": "A photo of a bear riding a bicycle over the moon"}}' \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H 'Content-Type: application/json' \
https://api.replicate.com/v1/deployments/acme/my-app-image-generator/predictions
The request will wait up to 60 seconds for the model to run. If this time is exceeded the prediction will be returned in a "starting"
state and need to be retrieved using the predictions.get
endpiont.
For a complete overview of the deployments.predictions.create
API check out our documentation on creating a prediction which covers a variety of use cases.
URL Parameters
- The name of the user or organization that owns the deployment.
- The name of the deployment.
Headers
- Preferstring
Leave the request open and wait for the model to finish generating output. Set to
wait=n
where n is a number of seconds between 1 and 60.See https://replicate.com/docs/topics/predictions/create-a-prediction#sync-mode for more information.
Request Body
The model's input as a JSON object. The input schema depends on what model you are running. To see the available inputs, click the "API" tab on the model you are running or get the model version and look at its
openapi_schema
property. For example, stability-ai/sdxl takesprompt
as an input.Files should be passed as HTTP URLs or data URLs.
Use an HTTP URL when:
- you have a large file > 256kb
- you want to be able to use the file multiple times
- you want your prediction metadata to be associable with your input files
Use a data URL when:
- you have a small file <= 256kb
- you don't want to upload and host the file somewhere
- you don't need to use the file again (Replicate will not store it)
- streamboolean
This field is deprecated.
Request a URL to receive streaming output using server-sent events (SSE).
This field is no longer needed as the returned prediction will always have a
stream
entry in itsurl
property if the model supports streaming. - webhookstring
An HTTPS URL for receiving a webhook when the prediction has new output. The webhook will be a POST request where the request body is the same as the response body of the get prediction operation. If there are network problems, we will retry the webhook a few times, so make sure it can be safely called more than once. Replicate will not follow redirects when sending webhook requests to your service, so be sure to specify a URL that will resolve without redirecting.
By default, we will send requests to your webhook URL whenever there are new outputs or the prediction has finished. You can change which events trigger webhook requests by specifying
webhook_events_filter
in the prediction request:start
: immediately on prediction startoutput
: each time a prediction generates an output (note that predictions can generate multiple outputs)logs
: each time log output is generated by a predictioncompleted
: when the prediction reaches a terminal state (succeeded/canceled/failed)
For example, if you only wanted requests to be sent at the start and end of the prediction, you would provide:
{ "input": { "text": "Alice" }, "webhook": "https://example.com/my-webhook", "webhook_events_filter": ["start", "completed"] }
Requests for event types
output
andlogs
will be sent at most once every 500ms. If you requeststart
andcompleted
webhooks, then they'll always be sent regardless of throttling.
Create a training
Endpoint
POST https://api.replicate.com/v1/models/{model_owner}/{model_name}/versions/{version_id}/trainings
Description
Start a new training of the model version you specify.
Example request body:
{
"destination": "{new_owner}/{new_name}",
"input": {
"train_data": "https://example.com/my-input-images.zip",
},
"webhook": "https://example.com/my-webhook",
}
Example cURL request:
curl -s -X POST \
-d '{"destination": "{new_owner}/{new_name}", "input": {"input_images": "https://example.com/my-input-images.zip"}}' \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H 'Content-Type: application/json' \
https://api.replicate.com/v1/models/stability-ai/sdxl/versions/da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf/trainings
The response will be the training object:
{
"id": "zz4ibbonubfz7carwiefibzgga",
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
"input": {
"input_images": "https://example.com/my-input-images.zip"
},
"logs": "",
"error": null,
"status": "starting",
"created_at": "2023-09-08T16:32:56.990893084Z",
"urls": {
"cancel": "https://api.replicate.com/v1/predictions/zz4ibbonubfz7carwiefibzgga/cancel",
"get": "https://api.replicate.com/v1/predictions/zz4ibbonubfz7carwiefibzgga"
}
}
As models can take several minutes or more to train, the result will not be available immediately. To get the final result of the training you should either provide a webhook
HTTPS URL for us to call when the results are ready, or poll the get a training endpoint until it has finished.
When a training completes, it creates a new version of the model at the specified destination.
To find some models to train on, check out the trainable language models collection.
URL Parameters
- The name of the user or organization that owns the model.
- The name of the model.
- The ID of the version.
Request Body
A string representing the desired model to push to in the format
{destination_model_owner}/{destination_model_name}
. This should be an existing model owned by the user or organization making the API request. If the destination is invalid, the server will return an appropriate 4XX response.An object containing inputs to the Cog model's
train()
function.- webhookstringAn HTTPS URL for receiving a webhook when the training completes. The webhook will be a POST request where the request body is the same as the response body of the get training operation. If there are network problems, we will retry the webhook a few times, so make sure it can be safely called more than once. Replicate will not follow redirects when sending webhook requests to your service, so be sure to specify a URL that will resolve without redirecting.
By default, we will send requests to your webhook URL whenever there are new outputs or the training has finished. You can change which events trigger webhook requests by specifying
webhook_events_filter
in the training request:start
: immediately on training startoutput
: each time a training generates an output (note that trainings can generate multiple outputs)logs
: each time log output is generated by a trainingcompleted
: when the training reaches a terminal state (succeeded/canceled/failed)
For example, if you only wanted requests to be sent at the start and end of the training, you would provide:
{ "destination": "my-organization/my-model", "input": { "text": "Alice" }, "webhook": "https://example.com/my-webhook", "webhook_events_filter": ["start", "completed"] }
Requests for event types
output
andlogs
will be sent at most once every 500ms. If you requeststart
andcompleted
webhooks, then they'll always be sent regardless of throttling.
Get a training
Endpoint
GET https://api.replicate.com/v1/trainings/{training_id}
Description
Get the current state of a training.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/trainings/zz4ibbonubfz7carwiefibzgga
The response will be the training object:
{
"completed_at": "2023-09-08T16:41:19.826523Z",
"created_at": "2023-09-08T16:32:57.018467Z",
"error": null,
"id": "zz4ibbonubfz7carwiefibzgga",
"input": {
"input_images": "https://example.com/my-input-images.zip"
},
"logs": "...",
"metrics": {
"predict_time": 502.713876
},
"output": {
"version": "...",
"weights": "..."
},
"started_at": "2023-09-08T16:32:57.112647Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/trainings/zz4ibbonubfz7carwiefibzgga",
"cancel": "https://api.replicate.com/v1/trainings/zz4ibbonubfz7carwiefibzgga/cancel"
},
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
}
status
will be one of:
starting
: the training is starting up. If this status lasts longer than a few seconds, then it’s typically because a new worker is being started to run the training.processing
: thetrain()
method of the model is currently running.succeeded
: the training completed successfully.failed
: the training encountered an error during processing.canceled
: the training was canceled by its creator.
In the case of success, output
will be an object containing the output of the model. Any files will be represented as HTTPS URLs. You’ll need to pass the Authorization
header to request them.
In the case of failure, error
will contain the error encountered during the training.
Terminated trainings (with a status of succeeded
, failed
, or canceled
) will include a metrics
object with a predict_time
property showing the amount of CPU or GPU time, in seconds, that the training used while running. It won’t include time waiting for the training to start.
URL Parameters
- The ID of the training to get.
List trainings
Endpoint
GET https://api.replicate.com/v1/trainings
Description
Get a paginated list of all trainings created by the user or organization associated with the provided API token.
This will include trainings created from the API and the website. It will return 100 records per page.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/trainings
The response will be a paginated JSON array of training objects, sorted with the most recent training first:
{
"next": null,
"previous": null,
"results": [
{
"completed_at": "2023-09-08T16:41:19.826523Z",
"created_at": "2023-09-08T16:32:57.018467Z",
"error": null,
"id": "zz4ibbonubfz7carwiefibzgga",
"input": {
"input_images": "https://example.com/my-input-images.zip"
},
"metrics": {
"predict_time": 502.713876
},
"output": {
"version": "...",
"weights": "..."
},
"started_at": "2023-09-08T16:32:57.112647Z",
"source": "api",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/trainings/zz4ibbonubfz7carwiefibzgga",
"cancel": "https://api.replicate.com/v1/trainings/zz4ibbonubfz7carwiefibzgga/cancel"
},
"model": "stability-ai/sdxl",
"version": "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
}
]
}
id
will be the unique ID of the training.
source
will indicate how the training was created. Possible values are web
or api
.
status
will be the status of the training. Refer to get a single training for possible values.
urls
will be a convenience object that can be used to construct new API requests for the given training.
version
will be the unique ID of model version used to create the training.
Cancel a training
Endpoint
POST https://api.replicate.com/v1/trainings/{training_id}/cancel
URL Parameters
- The ID of the training you want to cancel.
List available hardware for models
Endpoint
GET https://api.replicate.com/v1/hardware
Description
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/hardware
The response will be a JSON array of hardware objects:
[
{"name": "CPU", "sku": "cpu"},
{"name": "Nvidia T4 GPU", "sku": "gpu-t4"},
{"name": "Nvidia A40 GPU", "sku": "gpu-a40-small"},
{"name": "Nvidia A40 (Large) GPU", "sku": "gpu-a40-large"},
]
Get the authenticated account
Endpoint
GET https://api.replicate.com/v1/account
Description
Returns information about the user or organization associated with the provided API token.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/account
The response will be a JSON object describing the account:
{
"type": "organization",
"username": "acme",
"name": "Acme Corp, Inc.",
"github_url": "https://github.com/acme",
}
Get the signing secret for the default webhook
Endpoint
GET https://api.replicate.com/v1/webhooks/default/secret
Description
Get the signing secret for the default webhook endpoint. This is used to verify that webhook requests are coming from Replicate.
Example cURL request:
curl -s \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
https://api.replicate.com/v1/webhooks/default/secret
The response will be a JSON object with a key
property:
{
"key": "..."
}
Rate limits
We limit the number of API requests that can be made to Replicate:
- You can call create prediction at 600 requests per minute.
- All other endpoints you can call at 3000 requests per minute.
If you hit a limit, you will receive a response with status 429
with a body like:
{"detail":"Request was throttled. Expected available in 1 second."}
If you want higher limits, contact us.
OpenAPI schema
Replicate’s public HTTP API documentation is available as a machine-readable OpenAPI schema in JSON format.
See OpenAPI schema to learn more and download the schema.